Edit model card

Twitter-roBERTa-base for Sentiment Analysis - UPDATED (2022)

This is a RoBERTa-base model trained on ~124M tweets from January 2018 to December 2021, and finetuned for sentiment analysis with the TweetEval benchmark. The original Twitter-based RoBERTa model can be found here and the original reference paper is TweetEval. This model is suitable for English.

Labels: 0 -> Negative; 1 -> Neutral; 2 -> Positive

This sentiment analysis model has been integrated into TweetNLP. You can access the demo here.

Example Pipeline

from transformers import pipeline
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("Covid cases are increasing fast!")
[{'label': 'Negative', 'score': 0.7236}]

Full classification example

from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
from scipy.special import softmax
# Preprocess text (username and link placeholders)
def preprocess(text):
    new_text = []
    for t in text.split(" "):
        t = '@user' if t.startswith('@') and len(t) > 1 else t
        t = 'http' if t.startswith('http') else t
        new_text.append(t)
    return " ".join(new_text)
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
config = AutoConfig.from_pretrained(MODEL)
# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
#model.save_pretrained(MODEL)
text = "Covid cases are increasing fast!"
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
# # TF
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
# model.save_pretrained(MODEL)
# text = "Covid cases are increasing fast!"
# encoded_input = tokenizer(text, return_tensors='tf')
# output = model(encoded_input)
# scores = output[0][0].numpy()
# scores = softmax(scores)
# Print labels and scores
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
    l = config.id2label[ranking[i]]
    s = scores[ranking[i]]
    print(f"{i+1}) {l} {np.round(float(s), 4)}")

Output:

1) Negative 0.7236
2) Neutral 0.2287
3) Positive 0.0477

References

@inproceedings{camacho-collados-etal-2022-tweetnlp,
    title = "{T}weet{NLP}: Cutting-Edge Natural Language Processing for Social Media",
    author = "Camacho-collados, Jose  and
      Rezaee, Kiamehr  and
      Riahi, Talayeh  and
      Ushio, Asahi  and
      Loureiro, Daniel  and
      Antypas, Dimosthenis  and
      Boisson, Joanne  and
      Espinosa Anke, Luis  and
      Liu, Fangyu  and
      Mart{\'\i}nez C{\'a}mara, Eugenio" and others,
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, UAE",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.emnlp-demos.5",
    pages = "38--49"
}
@inproceedings{loureiro-etal-2022-timelms,
    title = "{T}ime{LM}s: Diachronic Language Models from {T}witter",
    author = "Loureiro, Daniel  and
      Barbieri, Francesco  and
      Neves, Leonardo  and
      Espinosa Anke, Luis  and
      Camacho-collados, Jose",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
    month = may,
    year = "2022",
    address = "Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.acl-demo.25",
    doi = "10.18653/v1/2022.acl-demo.25",
    pages = "251--260"
}
Downloads last month
103
Safetensors
Model size
125M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Kapiche/twitter-roberta-base-sentiment-latest