metadata
base_model:
- NousResearch/Hermes-3-Llama-3.1-70B
- Fizzarolli/L3.1-70b-glitz-v0.2
- cyberagent/Llama-3.1-70B-Japanese-Instruct-2407
- Sao10K/L3-70B-Euryale-v2.1
tags:
- merge
- mergekit
- lazymergekit
- NousResearch/Hermes-3-Llama-3.1-70B
- Fizzarolli/L3.1-70b-glitz-v0.2
- cyberagent/Llama-3.1-70B-Japanese-Instruct-2407
- Sao10K/L3-70B-Euryale-v2.1
L3.1-70b-Ginny
L3.1-70b-Ginny is a merge of the following models using LazyMergekit:
- NousResearch/Hermes-3-Llama-3.1-70B
- Fizzarolli/L3.1-70b-glitz-v0.2
- cyberagent/Llama-3.1-70B-Japanese-Instruct-2407
- Sao10K/L3-70B-Euryale-v2.1
I really liked Glitz and Euryale. Though they can get kinda wish-washy and don't follow structure well enough. I used Hermes as a base as it has rather good instruct following but it's way too instruct focused. I find myself running into Japanese text too. Which neither 3 models are like superb at, so I used cyberagent's Japanese Instruct to give it a boost.
🧩 Configuration
models:
- model: NousResearch/Hermes-3-Llama-3.1-70B
parameters:
density: 0.33
weight: 0.25
- model: Fizzarolli/L3.1-70b-glitz-v0.2
parameters:
density: 0.7
weight: 0.5
- model: cyberagent/Llama-3.1-70B-Japanese-Instruct-2407
parameters:
density: 0.5
weight: 0.25
- model: Sao10K/L3-70B-Euryale-v2.1
parameters:
density: 0.7
weight: 0.5
merge_method: ties
base_model: NousResearch/Hermes-3-Llama-3.1-70B
parameters:
normalize: true
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "KaraKaraWitch/L3.1-70b-Ginny"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])