L3.1-70b-MeowMix / README.md
KaraKaraWitch's picture
Add files using upload-large-folder tool
413e31d verified
|
raw
history blame
2.61 kB
metadata
base_model:
  - migtissera/Tess-3-Llama-3.1-70B
  - HODACHI/Llama-3.1-70B-EZO-1.1-it
  - shenzhi-wang/Llama3.1-70B-Chinese-Chat
  - Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-dpo-70B
tags:
  - merge
  - mergekit
  - lazymergekit
  - migtissera/Tess-3-Llama-3.1-70B
  - HODACHI/Llama-3.1-70B-EZO-1.1-it
  - shenzhi-wang/Llama3.1-70B-Chinese-Chat
  - Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-dpo-70B

L3.1-70b-MeowMix

Meow.

L3.1-70b-MeowMix is a merge of the following models using LazyMergekit running on Runpod:

Yap / Chat Format

Llama 3 Instruct.

🧩 Configuration


# Thanks to nruaif for suggesting MeowMix merge part.
# Merge CJK into migtissera/Tess-3-Llama-3.1-70B

models:
  - model: migtissera/Tess-3-Llama-3.1-70B
    parameters:
      density: 0.7
      weight:
        - value: 0.75
  - model: HODACHI/Llama-3.1-70B-EZO-1.1-it
    parameters:
      density: 0.2
      weight:
        - value: [1, 0.75, 0.5, 0.25, 0, 0, 0, 0, 0.0, 0.5, 1]
  - model: shenzhi-wang/Llama3.1-70B-Chinese-Chat
    parameters:
      density: 0.2
      weight:
        - value: [1, 0.75, 0.5, 0.25, 0, 0, 0, 0, 0.0, 0.5, 1]
  - model: Saxo/Linkbricks-Horizon-AI-Korean-llama3.1-sft-dpo-70B
    parameters:
      density: 0.2
      weight:
        - value: [1, 0.75, 0.5, 0.25, 0, 0, 0, 0, 0.0, 0.5, 1]

merge_method: ties
base_model: migtissera/Tess-3-Llama-3.1-70B
parameters:
  normalize: true
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "KaraKaraWitch/L3.1-70b-MeowMix"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])