|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-large-sw-cv-100hr-v3 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-sw-cv-100hr-v3 |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6016 |
|
- Model Preparation Time: 0.0041 |
|
- Wer: 0.4019 |
|
- Cer: 0.1436 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.15 |
|
- num_epochs: 120 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer | |
|
|:-------------:|:-------:|:-----:|:---------------:|:----------------------:|:------:|:------:| |
|
| 1.6262 | 0.9998 | 2079 | 0.5262 | 0.0041 | 0.5289 | 0.1392 | |
|
| 0.3281 | 2.0 | 4159 | 0.4055 | 0.0041 | 0.4037 | 0.1134 | |
|
| 0.265 | 2.9998 | 6238 | 0.3537 | 0.0041 | 0.3599 | 0.0974 | |
|
| 0.2592 | 4.0 | 8318 | 0.3882 | 0.0041 | 0.3790 | 0.1157 | |
|
| 0.27 | 4.9998 | 10397 | 0.4337 | 0.0041 | 0.3919 | 0.1124 | |
|
| 0.3063 | 6.0 | 12477 | 0.4226 | 0.0041 | 0.4094 | 0.1204 | |
|
| 2.7704 | 6.9998 | 14556 | 2.8607 | 0.0041 | 1.0 | 1.0 | |
|
| 2.86 | 8.0 | 16636 | 2.8618 | 0.0041 | 1.0 | 1.0 | |
|
| 2.861 | 8.9998 | 18715 | 2.8596 | 0.0041 | 1.0 | 1.0 | |
|
| 2.8597 | 10.0 | 20795 | 2.8618 | 0.0041 | 1.0 | 1.0 | |
|
| 2.8611 | 10.9998 | 22874 | 2.8581 | 0.0041 | 1.0 | 1.0 | |
|
| 2.8597 | 12.0 | 24954 | 2.8571 | 0.0041 | 1.0 | 1.0 | |
|
| 2.861 | 12.9998 | 27033 | 2.8568 | 0.0041 | 1.0 | 1.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|