|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-large-xls-r-300m-euskera-colab |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice |
|
type: common_voice |
|
config: eu |
|
split: test |
|
args: eu |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.28292759459247446 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-euskera-colab |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2281 |
|
- Wer: 0.2829 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 3.6474 | 0.43 | 400 | 0.8974 | 0.9025 | |
|
| 0.4849 | 0.85 | 800 | 0.4653 | 0.6314 | |
|
| 0.2924 | 1.28 | 1200 | 0.3726 | 0.5294 | |
|
| 0.2392 | 1.7 | 1600 | 0.3203 | 0.4461 | |
|
| 0.1957 | 2.13 | 2000 | 0.2932 | 0.4053 | |
|
| 0.1592 | 2.56 | 2400 | 0.2767 | 0.3760 | |
|
| 0.1442 | 2.98 | 2800 | 0.2605 | 0.3635 | |
|
| 0.1166 | 3.41 | 3200 | 0.2662 | 0.3415 | |
|
| 0.1064 | 3.84 | 3600 | 0.2576 | 0.3409 | |
|
| 0.0906 | 4.26 | 4000 | 0.2567 | 0.3234 | |
|
| 0.0818 | 4.69 | 4400 | 0.2472 | 0.3063 | |
|
| 0.0701 | 5.11 | 4800 | 0.2440 | 0.2951 | |
|
| 0.0595 | 5.54 | 5200 | 0.2321 | 0.2810 | |
|
| 0.0566 | 5.97 | 5600 | 0.2281 | 0.2829 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|