Model

Qwen/Qwen2.5-7B-InstructをCoTデータでファインチューニングすることで作成したreasoningモデルです。

学習にはQwen2.5-32B-Instruct-AWQを使って生成した合成データセットを使用しています。.

Usage

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

device = "cuda"

model = AutoModelForCausalLM.from_pretrained(
    'Kendamarron/Qwen2.5-7B-o1-ja-v0.1',
    torch_dtype=torch.bfloat16,
    device_map=device,
)
tokenizer = AutoTokenizer.from_pretrained('Kendamarron/Qwen2.5-7B-o1-ja-v0.1')

messages = [
  {"role": "system", "content": "あなたは優秀で論理的なアシスタントです。まずは<Thought></Thought>タグの中であなたの思考の過程を記載し、<Output></Output>タグの中に最終的にユーザーに提供する出力を記載します。"},
  {"role": "user", "content": "1から10までの整数を足すと?"}
]
text = tokenizer.apply_chat_template(
  messages,
  tokenize=False,
  add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
  model_inputs.input_ids,
  max_new_tokens=256,
  do_sample=True,
  top_p=0.95,
  top_k=40,
  temperature=0.7,
  repetition_penalty=1.1,
  pad_token_id=tokenizer.eos_token_id,
  eos_token_id=tokenizer.eos_token_id,
  no_repeat_ngram_size=2
  )
generated_ids = [
  output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

print(response)

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2.0

Training results

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3

LLama-Factory yaml

### model
model_name_or_path: Qwen/Qwen2.5-7B-Instruct

### method
stage: sft
do_train: true
finetuning_type: full
deepspeed: examples/deepspeed/ds_z3_config.json

### dataset
dataset: cot_normal, cot_math
template: qwen_ja
cutoff_len: 8192
overwrite_cache: true
preprocessing_num_workers: 16

### output
output_dir: saves/qwen2.5/full/sft
logging_steps: 1
save_steps: 500
plot_loss: true
overwrite_output_dir: true

### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 16
learning_rate: 1.0e-5
num_train_epochs: 2.0
lr_scheduler_type: cosine
optim: adamw_bnb_8bit
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000

### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

### logging
report_to: wandb
Downloads last month
40
Safetensors
Model size
7.62B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kendamarron/Qwen2.5-7B-o1-ja-v0.1

Base model

Qwen/Qwen2.5-7B
Finetuned
(124)
this model

Datasets used to train Kendamarron/Qwen2.5-7B-o1-ja-v0.1

Collection including Kendamarron/Qwen2.5-7B-o1-ja-v0.1