Kevincp560's picture
update model card README.md
28458c3
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - pub_med_summarization_dataset
metrics:
  - rouge
model-index:
  - name: bart-large-cnn-finetuned-pubmed
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: pub_med_summarization_dataset
          type: pub_med_summarization_dataset
          args: document
        metrics:
          - name: Rouge1
            type: rouge
            value: 40.4866

bart-large-cnn-finetuned-pubmed

This model is a fine-tuned version of facebook/bart-large-cnn on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8416
  • Rouge1: 40.4866
  • Rouge2: 16.7472
  • Rougel: 24.9831
  • Rougelsum: 36.4002
  • Gen Len: 142.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.932 1.0 4000 1.8110 38.1151 15.2255 23.4286 34.2521 141.8905
1.7001 2.0 8000 1.7790 39.8217 16.3042 24.649 35.831 142.0
1.5 3.0 12000 1.7971 40.6108 17.0446 25.1977 36.5556 141.9865
1.3316 4.0 16000 1.8106 40.0466 16.4851 24.7094 36.0998 141.9335
1.1996 5.0 20000 1.8416 40.4866 16.7472 24.9831 36.4002 142.0

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.6