Knobi3's picture
Upload folder using huggingface_hub
210c472 verified
---
tags:
- merge
- mergekit
- lazymergekit
- Equall/Saul-7B-Instruct-v1
- timpal0l/Mistral-7B-v0.1-flashback-v2-instruct
base_model:
- Equall/Saul-7B-Instruct-v1
- timpal0l/Mistral-7B-v0.1-flashback-v2-instruct
---
# BellmanSaul-flashback-dareties
BellmanSaul-flashback-dareties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Equall/Saul-7B-Instruct-v1](https://huggingface.co/Equall/Saul-7B-Instruct-v1)
* [timpal0l/Mistral-7B-v0.1-flashback-v2-instruct](https://huggingface.co/timpal0l/Mistral-7B-v0.1-flashback-v2-instruct)
## 🧩 Configuration
```yaml
models:
- model: neph1/bellman-7b-mistral-instruct-v0.2
# No parameters necessary for base model
- model: Equall/Saul-7B-Instruct-v1
parameters:
density: 0.53
weight: 0.7
- model: timpal0l/Mistral-7B-v0.1-flashback-v2-instruct
parameters:
density: 0.53
weight: 0.3
merge_method: dare_ties
base_model: neph1/bellman-7b-mistral-instruct-v0.2
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Knobi3/BellmanSaul-flashback-dareties"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```