KoichiYasuoka's picture
without ufal.chu-liu.edmonds
ce8e0e3
---
language:
- "vi"
tags:
- "vietnamese"
- "token-classification"
- "pos"
- "dependency-parsing"
base_model: FPTAI/vibert-base-cased
datasets:
- "universal_dependencies"
license: "cc-by-sa-4.0"
pipeline_tag: "token-classification"
widget:
- text: "Hai cái đầu thì tốt hơn một."
---
# bert-base-vietnamese-ud-goeswith
## Model Description
This is a BERT model pre-trained on Vietnamese texts for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [vibert-base-cased](https://huggingface.co/FPTAI/vibert-base-cased).
## How to Use
```py
from transformers import pipeline
nlp=pipeline("universal-dependencies","KoichiYasuoka/bert-base-vietnamese-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
print(nlp("Hai cái đầu thì tốt hơn một."))
```