NeuralGanesha-7b / README.md
Kukedlc's picture
Update README.md
16e76c8 verified
---
tags:
- merge
- mergekit
- lazymergekit
- Kukedlc/SomeModelsMerge-7b
- Kukedlc/MyModelsMerge-7b
base_model:
- Kukedlc/SomeModelsMerge-7b
- Kukedlc/MyModelsMerge-7b
license: apache-2.0
---
# NeuralGanesha-7b
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/ta2vBMskD23yihQnu4aXo.png)
NeuralGanesha-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Kukedlc/SomeModelsMerge-7b](https://huggingface.co/Kukedlc/SomeModelsMerge-7b)
* [Kukedlc/MyModelsMerge-7b](https://huggingface.co/Kukedlc/MyModelsMerge-7b)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: Kukedlc/SomeModelsMerge-7b
layer_range: [0, 32]
- model: Kukedlc/MyModelsMerge-7b
layer_range: [0, 32]
merge_method: slerp
base_model: Kukedlc/SomeModelsMerge-7b
parameters:
t:
- filter: self_attn
value: [0.1, 0.6, 0.3, 0.7, 1]
- filter: mlp
value: [0.9, 0.4, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/NeuralGanesha-7b"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```