metadata
tags:
- merge
- mergekit
- '#dpo'
- MaximeLabonne
- '#mergeofmerge'
base_model:
- CultriX/NeuralTrix-7B-dpo
- paulml/OmniBeagleSquaredMBX-v3-7B-v2
license: apache-2.0
NOT FOR USE - BUG INSTINSTINSTINSTINSTINST --
This model was merged, trained, and so on, thanks to the knowledge I gained from reading Maxime Labonne's course. Special thanks to him!
NeuTrixOmniBe-DPO
NeuTrix7000-7b-DPO is a merge of the following models using LazyMergekit:
🧩 Configuration
MODEL_NAME = "NeuTrix7000-7b-DPO"
yaml_config = """
slices:
- sources:
- model: CultriX/NeuralTrix-7B-dpo
layer_range: [0, 32]
- model: paulml/OmniBeagleSquaredMBX-v3-7B-v2
layer_range: [0, 32]
merge_method: slerp
base_model: CultriX/NeuralTrix-7B-dpo
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
"""
It was then trained with DPO using:
- Intel/orca_dpo_pairs
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/NeuTrix7000-7b-DPO"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=128, do_sample=True, temperature=0.5, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])