|
--- |
|
|
|
tags: |
|
- merge |
|
- mergekit |
|
- '#dpo' |
|
- MaximeLabonne |
|
- '#mergeofmerge' |
|
base_model: |
|
- CultriX/NeuralTrix-7B-dpo |
|
- paulml/OmniBeagleSquaredMBX-v3-7B-v2 |
|
|
|
license: apache-2.0 |
|
--- |
|
|
|
NOT FOR USE - BUG INSTINSTINSTINSTINSTINST -- |
|
|
|
|
|
# This model was merged, trained, and so on, thanks to the knowledge I gained from reading Maxime Labonne's course. Special thanks to him! |
|
[Labonne LLM Course](https://github.com/mlabonne/llm-course) |
|
|
|
![NeuTrixOmniBe](https://raw.githubusercontent.com/kukedlc87/imagenes/main/DALL%C2%B7E%202023-12-29%2002.13.09%20-%20A%20robot%20with%20a%20unique%20design%20where%20its%20face%20is%20a%20screen%20displaying%20binary%20code.%20The%20robot's%20body%20is%20sleek%20and%20modern%2C%20with%20a%20metallic%20finish%20that%20refl.png) |
|
|
|
# NeuTrixOmniBe-DPO |
|
|
|
NeuTrix7000-7b-DPO is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
MODEL_NAME = "NeuTrix7000-7b-DPO" |
|
yaml_config = """ |
|
slices: |
|
- sources: |
|
- model: CultriX/NeuralTrix-7B-dpo |
|
layer_range: [0, 32] |
|
- model: paulml/OmniBeagleSquaredMBX-v3-7B-v2 |
|
layer_range: [0, 32] |
|
merge_method: slerp |
|
base_model: CultriX/NeuralTrix-7B-dpo |
|
parameters: |
|
t: |
|
- filter: self_attn |
|
value: [0, 0.5, 0.3, 0.7, 1] |
|
- filter: mlp |
|
value: [1, 0.5, 0.7, 0.3, 0] |
|
- value: 0.5 |
|
dtype: bfloat16 |
|
""" |
|
``` |
|
|
|
It was then trained with DPO using: |
|
* Intel/orca_dpo_pairs |
|
|
|
|
|
|
|
|
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
model = "Kukedlc/NeuTrix7000-7b-DPO" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
outputs = pipeline(prompt, max_new_tokens=128, do_sample=True, temperature=0.5, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |