Ramakrishna-7b-v3 / README.md
Kukedlc's picture
Update README.md
ea88953 verified
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - automerger/YamShadow-7B
  - Kukedlc/Neural4gsm8k
  - Kukedlc/NeuralSirKrishna-7b
  - mlabonne/NeuBeagle-7B
  - Kukedlc/Ramakrishna-7b
  - Kukedlc/NeuralGanesha-7b
base_model:
  - automerger/YamShadow-7B
  - Kukedlc/Neural4gsm8k
  - Kukedlc/NeuralSirKrishna-7b
  - mlabonne/NeuBeagle-7B
  - Kukedlc/Ramakrishna-7b
  - Kukedlc/NeuralGanesha-7b
license: apache-2.0

Ramakrishna-7b-v3

Ramakrishna-7b-v3 is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: automerger/YamShadow-7B
    # No parameters necessary for base model
  - model: automerger/YamShadow-7B
    parameters:
      density: 0.6
      weight: 0.2
  - model: Kukedlc/Neural4gsm8k
    parameters:
      density: 0.3
      weight: 0.1
  - model: Kukedlc/NeuralSirKrishna-7b
    parameters:
      density: 0.6
      weight: 0.2
  - model: mlabonne/NeuBeagle-7B
    parameters:
      density: 0.5
      weight: 0.15
  - model: Kukedlc/Ramakrishna-7b
    parameters:
      density: 0.6
      weight: 0.25
  - model: Kukedlc/NeuralGanesha-7b
    parameters:
      density: 0.6
      weight: 0.1
merge_method: dare_ties
base_model: automerger/YamShadow-7B
parameters:
  int8_mask: true
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kukedlc/Ramakrishna-7b-v3"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])