metadata
tags:
- merge
- mergekit
- lazymergekit
- automerger/YamShadow-7B
- Kukedlc/Neural4gsm8k
- Kukedlc/NeuralSirKrishna-7b
- mlabonne/NeuBeagle-7B
- Kukedlc/Ramakrishna-7b
- Kukedlc/NeuralGanesha-7b
base_model:
- automerger/YamShadow-7B
- Kukedlc/Neural4gsm8k
- Kukedlc/NeuralSirKrishna-7b
- mlabonne/NeuBeagle-7B
- Kukedlc/Ramakrishna-7b
- Kukedlc/NeuralGanesha-7b
license: apache-2.0
Ramakrishna-7b-v3
Ramakrishna-7b-v3 is a merge of the following models using LazyMergekit:
- automerger/YamShadow-7B
- Kukedlc/Neural4gsm8k
- Kukedlc/NeuralSirKrishna-7b
- mlabonne/NeuBeagle-7B
- Kukedlc/Ramakrishna-7b
- Kukedlc/NeuralGanesha-7b
🧩 Configuration
models:
- model: automerger/YamShadow-7B
# No parameters necessary for base model
- model: automerger/YamShadow-7B
parameters:
density: 0.6
weight: 0.2
- model: Kukedlc/Neural4gsm8k
parameters:
density: 0.3
weight: 0.1
- model: Kukedlc/NeuralSirKrishna-7b
parameters:
density: 0.6
weight: 0.2
- model: mlabonne/NeuBeagle-7B
parameters:
density: 0.5
weight: 0.15
- model: Kukedlc/Ramakrishna-7b
parameters:
density: 0.6
weight: 0.25
- model: Kukedlc/NeuralGanesha-7b
parameters:
density: 0.6
weight: 0.1
merge_method: dare_ties
base_model: automerger/YamShadow-7B
parameters:
int8_mask: true
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Kukedlc/Ramakrishna-7b-v3"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])