Kumshe's picture
Training complete
19d69fd verified
|
raw
history blame
1.69 kB
---
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
- translation
- generated_from_trainer
metrics:
- bleu
model-index:
- name: t5-small-finetuned-hausa-to-chinese
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-hausa-to-chinese
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2589
- Bleu: 18.0414
- Gen Len: 3.4084
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0008
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 0.5399 | 1.0 | 846 | 0.3096 | 7.7834 | 3.2823 |
| 0.2863 | 2.0 | 1692 | 0.2769 | 6.2706 | 3.247 |
| 0.2346 | 3.0 | 2538 | 0.2589 | 18.0414 | 3.4084 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1