Edit model card

t5-small-finetuned-v2-chinese-to-hausa

This model is a fine-tuned version of google-t5/t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7757
  • Bleu: 1.9523
  • Gen Len: 18.6997

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 3000
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
3.5237 1.0 1103 2.5564 0.9857 18.8055
2.5377 2.0 2206 2.1815 1.6392 18.7259
2.2418 3.0 3309 2.0216 1.8732 18.5659
2.0818 4.0 4412 1.9331 1.9183 18.1569
1.9874 5.0 5515 1.8834 1.6409 18.0559
1.9213 6.0 6618 1.8511 1.9679 18.6534
1.8712 7.0 7721 1.8295 1.8632 18.4841
1.8292 8.0 8824 1.8101 2.5462 18.5024
1.7949 9.0 9927 1.7990 1.847 18.3106
1.7666 10.0 11030 1.7867 1.849 18.4893
1.7428 11.0 12133 1.7826 1.7849 18.6368
1.7256 12.0 13236 1.7757 1.9587 18.7077
1.7124 13.0 14339 1.7746 2.2943 18.5367
1.7051 14.0 15442 1.7757 1.9676 18.7081
1.7001 15.0 16545 1.7757 1.9523 18.6997

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kumshe/t5-small-finetuned-v2-chinese-to-hausa

Base model

google-t5/t5-small
Finetuned
(1509)
this model