Edit model card

t5-small-finetuned-v2-hausa-to-chinese

This model is a fine-tuned version of google-t5/t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1509
  • Bleu: 30.0183
  • Gen Len: 6.4896

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0006
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 3000
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
1.643 1.0 1103 1.1585 24.9091 6.7771
1.1913 2.0 2206 1.0817 24.5257 6.7541
1.0945 3.0 3309 1.0737 27.3158 6.4568
1.0113 4.0 4412 1.0400 27.6138 6.6673
0.9415 5.0 5515 1.0556 26.3585 6.335
0.8809 6.0 6618 1.0479 25.5111 6.4373
0.8281 7.0 7721 1.0496 26.9639 6.2402
0.7805 8.0 8824 1.0687 28.3541 6.4397
0.7351 9.0 9927 1.0859 28.7719 6.4876
0.6941 10.0 11030 1.1064 27.9477 6.2022
0.6621 11.0 12133 1.1114 29.7176 6.4492
0.6361 12.0 13236 1.1379 29.5086 6.4459
0.6165 13.0 14339 1.1407 29.7825 6.5262
0.6039 14.0 15442 1.1498 30.0064 6.4859
0.6002 15.0 16545 1.1509 30.0183 6.4896

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
17
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kumshe/t5-small-finetuned-v2-hausa-to-chinese

Base model

google-t5/t5-small
Finetuned
(1509)
this model