Edit model card

swinv2-base-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask

This model is a fine-tuned version of microsoft/swinv2-base-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3463
  • Accuracy: 0.8463
  • Recall: 0.8463
  • F1: 0.8464
  • Precision: 0.8482

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall F1 Precision
No log 0.9974 293 0.6222 0.7901 0.7901 0.7737 0.7747
No log 1.9983 587 0.4901 0.8063 0.8063 0.7998 0.8066
No log 2.9991 881 0.4374 0.8225 0.8225 0.8170 0.8356
No log 4.0 1175 0.4262 0.8340 0.8340 0.8270 0.8541
No log 4.9974 1468 0.4079 0.8310 0.8310 0.8290 0.8379
No log 5.9983 1762 0.4117 0.8370 0.8370 0.8361 0.8509
No log 6.9991 2056 0.3807 0.8370 0.8370 0.8361 0.8416
No log 8.0 2350 0.3419 0.8595 0.8595 0.8583 0.8609
No log 8.9974 2643 0.3628 0.8438 0.8438 0.8424 0.8448
0.4492 9.9745 2930 0.3638 0.8399 0.8399 0.8394 0.8410

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.0a0+81ea7a4
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
18
Safetensors
Model size
86.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kushagra07/swinv2-base-patch4-window8-256-finetuned-ind-17-imbalanced-aadhaarmask

Finetuned
(11)
this model

Evaluation results