|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- pierreguillou/DocLayNet-large |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
base_model: microsoft/layoutlmv3-base |
|
model-index: |
|
- name: layoutlmv3-finetuned-doclaynet |
|
results: |
|
- task: |
|
type: token-classification |
|
name: Token Classification |
|
dataset: |
|
name: pierreguillou/DocLayNet-large |
|
type: pierreguillou/DocLayNet-large |
|
args: doclaynet |
|
metrics: |
|
- type: precision |
|
value: 0.847 |
|
name: Precision |
|
- type: recall |
|
value: 0.893 |
|
name: Recall |
|
- type: f1 |
|
value: 0.870 |
|
name: F1 |
|
- type: accuracy |
|
value: 0.957 |
|
name: Accuracy |
|
--- |
|
|
|
# layoutlmv3-finetuned-funsd |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the pierreguillou/DocLayNet-large using bounding boxes and |
|
categories for lines (not for for paragraphs). |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.33888205885887146, |
|
- Precision: 0.8478835766832817, |
|
- Recall: 0.8934488524091807, |
|
- F1: 0.8700700634847538, |
|
- Accuracy: 0.9574140990541197 |
|
|
|
The script for training can be found here: https://github.com/huggingface/transformers/tree/main/examples/research_projects/layoutlmv3 |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- training_steps: 100000 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 1.11.0+cu115 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|