metadata
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_6_1
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-turkish-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_6_1
type: common_voice_6_1
config: tr
split: test
args: tr
metrics:
- name: Wer
type: wer
value: 0.21101011132672862
wav2vec2-large-mms-1b-turkish-colab
This model is a fine-tuned version of facebook/mms-1b-all on the common_voice_6_1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1472
- Wer: 0.2110
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
4.6395 | 0.92 | 100 | 0.1800 | 0.2494 |
0.2845 | 1.83 | 200 | 0.1673 | 0.2354 |
0.2692 | 2.75 | 300 | 0.1573 | 0.2227 |
0.245 | 3.67 | 400 | 0.1568 | 0.2147 |
0.2385 | 4.59 | 500 | 0.1533 | 0.2164 |
0.2416 | 5.5 | 600 | 0.1502 | 0.2139 |
0.2182 | 6.42 | 700 | 0.1507 | 0.2124 |
0.2276 | 7.34 | 800 | 0.1472 | 0.2110 |
Framework versions
- Transformers 4.33.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3