1. Introduction of LLM4Decompile
LLM4Decompile aims to decompile x86 assembly instructions into C. The newly released V1.5 series are trained with a larger dataset (15B tokens) and a maximum token length of 4,096, with remarkable performance (up to 100% improvement) compared to the previous model.
- Github Repository: LLM4Decompile
2. Evaluation Results
Model/Benchmark | HumanEval-Decompile | ExeBench | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Optimization Level | O0 | O1 | O2 | O3 | AVG | O0 | O1 | O2 | O3 | AVG |
DeepSeek-Coder-6.7B | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.0000 |
GPT-4o | 0.3049 | 0.1159 | 0.1037 | 0.1159 | 0.1601 | 0.0443 | 0.0328 | 0.0397 | 0.0343 | 0.0378 |
LLM4Decompile-End-1.3B | 0.4720 | 0.2061 | 0.2122 | 0.2024 | 0.2732 | 0.1786 | 0.1362 | 0.1320 | 0.1328 | 0.1449 |
LLM4Decompile-End-6.7B | 0.6805 | 0.3951 | 0.3671 | 0.3720 | 0.4537 | 0.2289 | 0.1660 | 0.1618 | 0.1625 | 0.1798 |
LLM4Decompile-End-33B | 0.5168 | 0.2956 | 0.2815 | 0.2675 | 0.3404 | 0.1886 | 0.1465 | 0.1396 | 0.1411 | 0.1540 |
3. How to Use
Here is an example of how to use our model (Revised for V1.5). Note: Replace func0 with the function name you want to decompile.
Preprocessing: Compile the C code into binary, and disassemble the binary into assembly instructions.
import subprocess
import os
OPT = ["O0", "O1", "O2", "O3"]
fileName = 'samples/sample' #'path/to/file'
for opt_state in OPT:
output_file = fileName +'_' + opt_state
input_file = fileName+'.c'
compile_command = f'gcc -o {output_file}.o {input_file} -{opt_state} -lm'#compile the code with GCC on Linux
subprocess.run(compile_command, shell=True, check=True)
compile_command = f'objdump -d {output_file}.o > {output_file}.s'#disassemble the binary file into assembly instructions
subprocess.run(compile_command, shell=True, check=True)
input_asm = ''
with open(output_file+'.s') as f:#asm file
asm= f.read()
if '<'+'func0'+'>:' not in asm: #IMPORTANT replace func0 with the function name
raise ValueError("compile fails")
asm = '<'+'func0'+'>:' + asm.split('<'+'func0'+'>:')[-1].split('\n\n')[0] #IMPORTANT replace func0 with the function name
asm_clean = ""
asm_sp = asm.split("\n")
for tmp in asm_sp:
if len(tmp.split("\t"))<3 and '00' in tmp:
continue
idx = min(
len(tmp.split("\t")) - 1, 2
)
tmp_asm = "\t".join(tmp.split("\t")[idx:]) # remove the binary code
tmp_asm = tmp_asm.split("#")[0].strip() # remove the comments
asm_clean += tmp_asm + "\n"
input_asm = asm_clean.strip()
before = f"# This is the assembly code:\n"#prompt
after = "\n# What is the source code?\n"#prompt
input_asm_prompt = before+input_asm.strip()+after
with open(fileName +'_' + opt_state +'.asm','w',encoding='utf-8') as f:
f.write(input_asm_prompt)
Decompilation: Use LLM4Decompile to translate the assembly instructions into C:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_path = 'LLM4Binary/llm4decompile-1.3b-v1.5' # V1.5 Model
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path,torch_dtype=torch.bfloat16).cuda()
with open(fileName +'_' + OPT[0] +'.asm','r') as f:#optimization level O0
asm_func = f.read()
inputs = tokenizer(asm_func, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=4000)
c_func_decompile = tokenizer.decode(outputs[0][len(inputs[0]):-1])
with open(fileName +'.c','r') as f:#original file
func = f.read()
print(f'original function:\n{func}')# Note we only decompile one function, where the original file may contain multiple functions
print(f'decompiled function:\n{c_func_decompile}')
4. License
This code repository is licensed under the MIT License.
5. Contact
If you have any questions, please raise an issue.
- Downloads last month
- 1,028
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.