LLukas22's picture
Auto Upload
8c8fd40
|
raw
history blame
3.46 kB
---
license: cc-by-nc-4.0
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- generated_from_trainer
datasets:
- squad
- newsqa
- LLukas22/cqadupstack
- LLukas22/fiqa
- LLukas22/scidocs
- deepset/germanquad
- LLukas22/nq
---
# all-MiniLM-L12-v2-embedding-all
This model is a fine-tuned version of [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) on the following datasets: [squad](https://huggingface.co/datasets/squad), [newsqa](https://huggingface.co/datasets/newsqa), [LLukas22/cqadupstack](https://huggingface.co/datasets/LLukas22/cqadupstack), [LLukas22/fiqa](https://huggingface.co/datasets/LLukas22/fiqa), [LLukas22/scidocs](https://huggingface.co/datasets/LLukas22/scidocs), [deepset/germanquad](https://huggingface.co/datasets/deepset/germanquad), [LLukas22/nq](https://huggingface.co/datasets/LLukas22/nq).
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('LLukas22/all-MiniLM-L12-v2-embedding-all')
embeddings = model.encode(sentences)
print(embeddings)
```
## Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1E+00
- per device batch size: 60
- effective batch size: 180
- seed: 42
- optimizer: AdamW with betas (0.9,0.999) and eps 1E-08
- weight decay: 2E-02
- D-Adaptation: True
- Warmup: True
- number of epochs: 20
- mixed_precision_training: bf16
## Training results
| Epoch | Train Loss | Validation Loss |
| ----- | ---------- | --------------- |
| 0 | 0.0708 | 0.0619 |
| 1 | 0.0609 | 0.0567 |
| 2 | 0.0531 | 0.0542 |
| 3 | 0.0475 | 0.0528 |
| 4 | 0.0428 | 0.0521 |
| 5 | 0.0389 | 0.0513 |
| 6 | 0.0352 | 0.0508 |
| 7 | 0.0322 | 0.0494 |
| 8 | 0.0289 | 0.0485 |
| 9 | 0.0264 | 0.0483 |
| 10 | 0.0242 | 0.0466 |
| 11 | 0.0221 | 0.0459 |
| 12 | 0.0204 | 0.0469 |
| 13 | 0.0189 | 0.0459 |
## Evaluation results
| Epoch | top_1 | top_3 | top_5 | top_10 | top_25 |
| ----- | ----- | ----- | ----- | ----- | ----- |
| 0 | 0.507 | 0.665 | 0.721 | 0.784 | 0.847 |
| 1 | 0.501 | 0.661 | 0.719 | 0.783 | 0.846 |
| 2 | 0.508 | 0.669 | 0.726 | 0.789 | 0.851 |
| 3 | 0.507 | 0.665 | 0.722 | 0.785 | 0.85 |
| 4 | 0.506 | 0.667 | 0.724 | 0.788 | 0.851 |
| 5 | 0.511 | 0.673 | 0.731 | 0.795 | 0.857 |
| 6 | 0.51 | 0.674 | 0.732 | 0.794 | 0.856 |
| 7 | 0.512 | 0.674 | 0.732 | 0.796 | 0.859 |
| 8 | 0.515 | 0.678 | 0.736 | 0.799 | 0.861 |
| 9 | 0.514 | 0.679 | 0.737 | 0.8 | 0.862 |
| 10 | 0.52 | 0.683 | 0.741 | 0.803 | 0.864 |
| 11 | 0.522 | 0.686 | 0.744 | 0.806 | 0.866 |
| 12 | 0.519 | 0.683 | 0.741 | 0.804 | 0.864 |
| 13 | 0.522 | 0.685 | 0.743 | 0.806 | 0.865 |
## Framework versions
- Transformers: 4.25.1
- PyTorch: 2.0.0.dev20230210+cu118
- PyTorch Lightning: 1.8.6
- Datasets: 2.7.1
- Tokenizers: 0.13.1
- Sentence Transformers: 2.2.2
## Additional Information
This model was trained as part of my Master's Thesis **'Evaluation of transformer based language models for use in service information systems'**. The source code is available on [Github](https://github.com/LLukas22/Master).