|
--- |
|
license: cc-by-nc-4.0 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
- generated_from_trainer |
|
datasets: |
|
- squad |
|
- newsqa |
|
- LLukas22/cqadupstack |
|
- LLukas22/fiqa |
|
- LLukas22/scidocs |
|
- deepset/germanquad |
|
- LLukas22/nq |
|
--- |
|
|
|
# all-MiniLM-L12-v2-embedding-all |
|
|
|
This model is a fine-tuned version of [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) on the following datasets: [squad](https://huggingface.co/datasets/squad), [newsqa](https://huggingface.co/datasets/newsqa), [LLukas22/cqadupstack](https://huggingface.co/datasets/LLukas22/cqadupstack), [LLukas22/fiqa](https://huggingface.co/datasets/LLukas22/fiqa), [LLukas22/scidocs](https://huggingface.co/datasets/LLukas22/scidocs), [deepset/germanquad](https://huggingface.co/datasets/deepset/germanquad), [LLukas22/nq](https://huggingface.co/datasets/LLukas22/nq). |
|
|
|
|
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('LLukas22/all-MiniLM-L12-v2-embedding-all') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
## Training hyperparameters |
|
The following hyperparameters were used during training: |
|
|
|
- learning_rate: 1E+00 |
|
- per device batch size: 60 |
|
- effective batch size: 180 |
|
- seed: 42 |
|
- optimizer: AdamW with betas (0.9,0.999) and eps 1E-08 |
|
- weight decay: 2E-02 |
|
- D-Adaptation: True |
|
- Warmup: True |
|
- number of epochs: 20 |
|
- mixed_precision_training: bf16 |
|
|
|
## Training results |
|
| Epoch | Train Loss | Validation Loss | |
|
| ----- | ---------- | --------------- | |
|
| 0 | 0.0708 | 0.0619 | |
|
| 1 | 0.0609 | 0.0567 | |
|
| 2 | 0.0531 | 0.0542 | |
|
| 3 | 0.0475 | 0.0528 | |
|
| 4 | 0.0428 | 0.0521 | |
|
| 5 | 0.0389 | 0.0513 | |
|
| 6 | 0.0352 | 0.0508 | |
|
| 7 | 0.0322 | 0.0494 | |
|
| 8 | 0.0289 | 0.0485 | |
|
| 9 | 0.0264 | 0.0483 | |
|
| 10 | 0.0242 | 0.0466 | |
|
| 11 | 0.0221 | 0.0459 | |
|
| 12 | 0.0204 | 0.0469 | |
|
| 13 | 0.0189 | 0.0459 | |
|
|
|
## Evaluation results |
|
| Epoch | top_1 | top_3 | top_5 | top_10 | top_25 | |
|
| ----- | ----- | ----- | ----- | ----- | ----- | |
|
| 0 | 0.507 | 0.665 | 0.721 | 0.784 | 0.847 | |
|
| 1 | 0.501 | 0.661 | 0.719 | 0.783 | 0.846 | |
|
| 2 | 0.508 | 0.669 | 0.726 | 0.789 | 0.851 | |
|
| 3 | 0.507 | 0.665 | 0.722 | 0.785 | 0.85 | |
|
| 4 | 0.506 | 0.667 | 0.724 | 0.788 | 0.851 | |
|
| 5 | 0.511 | 0.673 | 0.731 | 0.795 | 0.857 | |
|
| 6 | 0.51 | 0.674 | 0.732 | 0.794 | 0.856 | |
|
| 7 | 0.512 | 0.674 | 0.732 | 0.796 | 0.859 | |
|
| 8 | 0.515 | 0.678 | 0.736 | 0.799 | 0.861 | |
|
| 9 | 0.514 | 0.679 | 0.737 | 0.8 | 0.862 | |
|
| 10 | 0.52 | 0.683 | 0.741 | 0.803 | 0.864 | |
|
| 11 | 0.522 | 0.686 | 0.744 | 0.806 | 0.866 | |
|
| 12 | 0.519 | 0.683 | 0.741 | 0.804 | 0.864 | |
|
| 13 | 0.522 | 0.685 | 0.743 | 0.806 | 0.865 | |
|
|
|
## Framework versions |
|
- Transformers: 4.25.1 |
|
- PyTorch: 2.0.0.dev20230210+cu118 |
|
- PyTorch Lightning: 1.8.6 |
|
- Datasets: 2.7.1 |
|
- Tokenizers: 0.13.1 |
|
- Sentence Transformers: 2.2.2 |
|
|
|
## Additional Information |
|
This model was trained as part of my Master's Thesis **'Evaluation of transformer based language models for use in service information systems'**. The source code is available on [Github](https://github.com/LLukas22/Master). |
|
|