metadata
license: apache-2.0
base_model: facebook/dinov2-base
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: dinov2-base-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6287625418060201
dinov2-base-finetuned-eurosat
This model is a fine-tuned version of facebook/dinov2-base on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6583
- Accuracy: 0.6288
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6861 | 0.9960 | 63 | 0.6516 | 0.6276 |
0.6401 | 1.9921 | 126 | 0.6583 | 0.6288 |
0.6342 | 2.9881 | 189 | 0.6410 | 0.6288 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1