Leo97's picture
update model card README.md
7567ae6
|
raw
history blame
4.92 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: KcELECTRA-small-v2022-finetuned-in-vehicle
    results: []

KcELECTRA-small-v2022-finetuned-in-vehicle

This model is a fine-tuned version of beomi/KcELECTRA-small-v2022 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5014
  • Accuracy: 0.92
  • F1: 0.9010

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
2.6201 1.0 38 2.5909 0.18 0.0549
2.5788 2.0 76 2.5466 0.18 0.0549
2.5397 3.0 114 2.4976 0.18 0.0549
2.4886 4.0 152 2.4178 0.3833 0.2516
2.4062 5.0 190 2.3038 0.4267 0.2575
2.3015 6.0 228 2.1798 0.4333 0.2746
2.1868 7.0 266 2.0589 0.52 0.4121
2.0713 8.0 304 1.9436 0.6133 0.5349
1.9763 9.0 342 1.8359 0.66 0.6048
1.8715 10.0 380 1.7361 0.72 0.6863
1.7755 11.0 418 1.6402 0.7233 0.6891
1.6873 12.0 456 1.5496 0.81 0.7774
1.5828 13.0 494 1.4681 0.8433 0.8089
1.5222 14.0 532 1.3870 0.84 0.8038
1.4397 15.0 570 1.3148 0.88 0.8554
1.3673 16.0 608 1.2461 0.89 0.8705
1.3047 17.0 646 1.1801 0.91 0.8903
1.2232 18.0 684 1.1209 0.9033 0.8844
1.1661 19.0 722 1.0618 0.9 0.8817
1.1104 20.0 760 1.0207 0.89 0.8660
1.0572 21.0 798 0.9679 0.8933 0.8725
1.0191 22.0 836 0.9243 0.8933 0.8722
0.9548 23.0 874 0.8850 0.8967 0.8757
0.9364 24.0 912 0.8429 0.9 0.8790
0.871 25.0 950 0.8094 0.8933 0.8724
0.8629 26.0 988 0.7773 0.8967 0.8746
0.7992 27.0 1026 0.7540 0.8933 0.8735
0.7948 28.0 1064 0.7234 0.8933 0.8704
0.7455 29.0 1102 0.6967 0.8967 0.8749
0.7236 30.0 1140 0.6760 0.91 0.8881
0.6905 31.0 1178 0.6519 0.9033 0.8832
0.6857 32.0 1216 0.6396 0.9133 0.8944
0.6526 33.0 1254 0.6155 0.9167 0.8963
0.6294 34.0 1292 0.6025 0.9033 0.8835
0.6179 35.0 1330 0.5909 0.9167 0.8970
0.6022 36.0 1368 0.5757 0.9133 0.8934
0.5753 37.0 1406 0.5610 0.92 0.8999
0.561 38.0 1444 0.5536 0.9167 0.8970
0.553 39.0 1482 0.5417 0.92 0.8998
0.5395 40.0 1520 0.5367 0.92 0.9018
0.5402 41.0 1558 0.5276 0.92 0.9018
0.5266 42.0 1596 0.5238 0.92 0.9010
0.5178 43.0 1634 0.5182 0.92 0.9018
0.52 44.0 1672 0.5129 0.92 0.9010
0.495 45.0 1710 0.5069 0.9167 0.8981
0.5124 46.0 1748 0.5054 0.9167 0.8981
0.5034 47.0 1786 0.5038 0.92 0.9018
0.5108 48.0 1824 0.5020 0.92 0.9018
0.483 49.0 1862 0.5016 0.92 0.9010
0.4974 50.0 1900 0.5014 0.92 0.9010

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2