Leo97's picture
Update README.md
d99231f
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: KcELECTRA-small-v2022-finetuned-in-vehicle
    results: []
language:
  - ko
pipeline_tag: text-classification
widget:
  - text: 오늘 날씨 알려줘.
    example_title: Example 1
  - text: 방탄소년단 노래 찾아줘.
    example_title: Example 2

KcELECTRA-small-v2022-finetuned-in-vehicle

This model is a fine-tuned version of beomi/KcELECTRA-small-v2022 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5573
  • Accuracy: 0.8908
  • F1: 0.8752

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
3.3864 1.0 150 3.3222 0.0992 0.0179
3.2362 2.0 300 3.0647 0.2342 0.1422
2.9257 3.0 450 2.7001 0.3467 0.2377
2.5953 4.0 600 2.3780 0.46 0.3409
2.3033 5.0 750 2.1041 0.5025 0.3911
2.0477 6.0 900 1.8675 0.5583 0.4585
1.8309 7.0 1050 1.6711 0.6167 0.5354
1.6455 8.0 1200 1.5126 0.6667 0.5924
1.4883 9.0 1350 1.3677 0.7325 0.6660
1.3473 10.0 1500 1.2435 0.7542 0.6914
1.23 11.0 1650 1.1460 0.7517 0.6911
1.1299 12.0 1800 1.0577 0.7792 0.7251
1.0437 13.0 1950 0.9860 0.7908 0.7397
0.9683 14.0 2100 0.9219 0.8092 0.7625
0.8973 15.0 2250 0.8622 0.8342 0.8028
0.8417 16.0 2400 0.8129 0.8408 0.8122
0.7891 17.0 2550 0.7719 0.85 0.8264
0.743 18.0 2700 0.7323 0.8583 0.8353
0.7037 19.0 2850 0.7005 0.8583 0.8341
0.6715 20.0 3000 0.6696 0.8717 0.8494
0.6396 21.0 3150 0.6469 0.8767 0.8546
0.6117 22.0 3300 0.6285 0.8808 0.8613
0.5897 23.0 3450 0.6137 0.88 0.8618
0.5684 24.0 3600 0.5956 0.88 0.8604
0.5522 25.0 3750 0.5851 0.8808 0.8622
0.5429 26.0 3900 0.5741 0.8867 0.8697
0.53 27.0 4050 0.5672 0.8892 0.8730
0.5234 28.0 4200 0.5616 0.8892 0.8733
0.5184 29.0 4350 0.5580 0.89 0.8738
0.5138 30.0 4500 0.5573 0.8908 0.8752

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu116
  • Datasets 2.10.1
  • Tokenizers 0.13.2