metadata
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: KcELECTRA-small-v2022-finetuned-in-vehicle
results: []
language:
- ko
pipeline_tag: text-classification
widget:
- text: 오늘 날씨 알려줘.
example_title: Example 1
- text: 방탄소년단 노래 찾아줘.
example_title: Example 2
KcELECTRA-small-v2022-finetuned-in-vehicle
This model is a fine-tuned version of beomi/KcELECTRA-small-v2022 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5573
- Accuracy: 0.8908
- F1: 0.8752
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
3.3864 | 1.0 | 150 | 3.3222 | 0.0992 | 0.0179 |
3.2362 | 2.0 | 300 | 3.0647 | 0.2342 | 0.1422 |
2.9257 | 3.0 | 450 | 2.7001 | 0.3467 | 0.2377 |
2.5953 | 4.0 | 600 | 2.3780 | 0.46 | 0.3409 |
2.3033 | 5.0 | 750 | 2.1041 | 0.5025 | 0.3911 |
2.0477 | 6.0 | 900 | 1.8675 | 0.5583 | 0.4585 |
1.8309 | 7.0 | 1050 | 1.6711 | 0.6167 | 0.5354 |
1.6455 | 8.0 | 1200 | 1.5126 | 0.6667 | 0.5924 |
1.4883 | 9.0 | 1350 | 1.3677 | 0.7325 | 0.6660 |
1.3473 | 10.0 | 1500 | 1.2435 | 0.7542 | 0.6914 |
1.23 | 11.0 | 1650 | 1.1460 | 0.7517 | 0.6911 |
1.1299 | 12.0 | 1800 | 1.0577 | 0.7792 | 0.7251 |
1.0437 | 13.0 | 1950 | 0.9860 | 0.7908 | 0.7397 |
0.9683 | 14.0 | 2100 | 0.9219 | 0.8092 | 0.7625 |
0.8973 | 15.0 | 2250 | 0.8622 | 0.8342 | 0.8028 |
0.8417 | 16.0 | 2400 | 0.8129 | 0.8408 | 0.8122 |
0.7891 | 17.0 | 2550 | 0.7719 | 0.85 | 0.8264 |
0.743 | 18.0 | 2700 | 0.7323 | 0.8583 | 0.8353 |
0.7037 | 19.0 | 2850 | 0.7005 | 0.8583 | 0.8341 |
0.6715 | 20.0 | 3000 | 0.6696 | 0.8717 | 0.8494 |
0.6396 | 21.0 | 3150 | 0.6469 | 0.8767 | 0.8546 |
0.6117 | 22.0 | 3300 | 0.6285 | 0.8808 | 0.8613 |
0.5897 | 23.0 | 3450 | 0.6137 | 0.88 | 0.8618 |
0.5684 | 24.0 | 3600 | 0.5956 | 0.88 | 0.8604 |
0.5522 | 25.0 | 3750 | 0.5851 | 0.8808 | 0.8622 |
0.5429 | 26.0 | 3900 | 0.5741 | 0.8867 | 0.8697 |
0.53 | 27.0 | 4050 | 0.5672 | 0.8892 | 0.8730 |
0.5234 | 28.0 | 4200 | 0.5616 | 0.8892 | 0.8733 |
0.5184 | 29.0 | 4350 | 0.5580 | 0.89 | 0.8738 |
0.5138 | 30.0 | 4500 | 0.5573 | 0.8908 | 0.8752 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2