segformer-b0-finetuned-human-parsing

This model is a fine-tuned version of nvidia/mit-b0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9476
  • Mean Iou: 0.0726
  • Mean Accuracy: 0.1221
  • Overall Accuracy: 0.3575
  • Accuracy Background: nan
  • Accuracy Hat: 0.0048
  • Accuracy Hair: 0.4813
  • Accuracy Sunglasses: 0.0
  • Accuracy Upper-clothes: 0.9405
  • Accuracy Skirt: 0.0000
  • Accuracy Pants: 0.0631
  • Accuracy Dress: 0.1031
  • Accuracy Belt: 0.0
  • Accuracy Left-shoe: 0.0011
  • Accuracy Right-shoe: 0.0010
  • Accuracy Face: 0.4406
  • Accuracy Left-leg: 0.0291
  • Accuracy Right-leg: 0.0
  • Accuracy Left-arm: 0.0
  • Accuracy Right-arm: 0.0001
  • Accuracy Bag: 0.0114
  • Accuracy Scarf: 0.0
  • Iou Background: 0.0
  • Iou Hat: 0.0043
  • Iou Hair: 0.4221
  • Iou Sunglasses: 0.0
  • Iou Upper-clothes: 0.3239
  • Iou Skirt: 0.0000
  • Iou Pants: 0.0559
  • Iou Dress: 0.0728
  • Iou Belt: 0.0
  • Iou Left-shoe: 0.0011
  • Iou Right-shoe: 0.0009
  • Iou Face: 0.3872
  • Iou Left-leg: 0.0271
  • Iou Right-leg: 0.0
  • Iou Left-arm: 0.0
  • Iou Right-arm: 0.0001
  • Iou Bag: 0.0106
  • Iou Scarf: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Hat Accuracy Hair Accuracy Sunglasses Accuracy Upper-clothes Accuracy Skirt Accuracy Pants Accuracy Dress Accuracy Belt Accuracy Left-shoe Accuracy Right-shoe Accuracy Face Accuracy Left-leg Accuracy Right-leg Accuracy Left-arm Accuracy Right-arm Accuracy Bag Accuracy Scarf Iou Background Iou Hat Iou Hair Iou Sunglasses Iou Upper-clothes Iou Skirt Iou Pants Iou Dress Iou Belt Iou Left-shoe Iou Right-shoe Iou Face Iou Left-leg Iou Right-leg Iou Left-arm Iou Right-arm Iou Bag Iou Scarf
2.5768 0.4 20 2.7812 0.0726 0.1332 0.2876 nan 0.0178 0.3204 0.0004 0.5548 0.0004 0.2555 0.2373 0.0 0.0103 0.0003 0.5637 0.0287 0.0302 0.0001 0.0008 0.2435 0.0 0.0 0.0166 0.2759 0.0001 0.2781 0.0004 0.1710 0.1295 0.0 0.0098 0.0003 0.3251 0.0260 0.0248 0.0001 0.0007 0.0491 0.0
2.2093 0.8 40 2.5166 0.0563 0.1052 0.3288 nan 0.0 0.1994 0.0 0.9447 0.0015 0.0435 0.1164 0.0 0.0008 0.0000 0.4655 0.0007 0.0003 0.0 0.0 0.0153 0.0 0.0 0.0 0.1946 0.0 0.3037 0.0015 0.0417 0.0842 0.0 0.0008 0.0000 0.3726 0.0007 0.0003 0.0 0.0 0.0124 0.0
1.8804 1.2 60 2.0209 0.0632 0.1110 0.3374 nan 0.0087 0.3724 0.0 0.9475 0.0014 0.0162 0.0528 0.0 0.0001 0.0008 0.4257 0.0561 0.0001 0.0 0.0 0.0055 0.0 0.0 0.0077 0.3472 0.0 0.3086 0.0014 0.0156 0.0403 0.0 0.0001 0.0008 0.3597 0.0515 0.0001 0.0 0.0 0.0052 0.0
1.8776 1.6 80 2.0016 0.0665 0.1154 0.3454 nan 0.0056 0.4172 0.0 0.9412 0.0000 0.0490 0.0697 0.0 0.0002 0.0006 0.4349 0.0329 0.0000 0.0 0.0000 0.0100 0.0 0.0 0.0048 0.3791 0.0 0.3138 0.0000 0.0438 0.0542 0.0 0.0002 0.0006 0.3608 0.0304 0.0000 0.0 0.0000 0.0093 0.0
1.8471 2.0 100 1.9476 0.0726 0.1221 0.3575 nan 0.0048 0.4813 0.0 0.9405 0.0000 0.0631 0.1031 0.0 0.0011 0.0010 0.4406 0.0291 0.0 0.0 0.0001 0.0114 0.0 0.0 0.0043 0.4221 0.0 0.3239 0.0000 0.0559 0.0728 0.0 0.0011 0.0009 0.3872 0.0271 0.0 0.0 0.0001 0.0106 0.0

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
11
Safetensors
Model size
3.72M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using Lexic0n/segformer-b0-finetuned-human-parsing 1