|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- Open-Orca/SlimOrca |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
Obtained from freecs/ThetaWave-7B after SFT fine tuning. |
|
|
|
Open-Orca/SlimOrca datasets were used. |
|
|
|
The model does not currently support system_prompt because it uses mistral's chat_template, and the next release is in training to switch to the chatml template to support system_prompt. system_prompt can be implemented if you manually change the chat_template, but the After testing, this seems to degrade the model performance. |
|
|
|
More model details will be released... |
|
|
|
Vllm deployment command |
|
``` |
|
# Single graphics card |
|
python /path/to/vllm/vllm/entrypoints/openai/api_server.py \ |
|
--model '/path/to/ThetaWave-7B-sft' \ |
|
--tokenizer '/path/to/ThetaWave-7B-sft' \ |
|
--tokenizer-mode auto \ |
|
--dtype float16 \ |
|
--enforce-eager \ |
|
--host 0.0.0.0 \ |
|
--port 6000 \ |
|
--disable-log-stats \ |
|
--disable-log-requests |
|
|
|
# Dual graphics cards |
|
python /path/to/vllm/vllm/entrypoints/openai/api_server.py \ |
|
--model '/path/to/ThetaWave-7B-sft' \ |
|
--tokenizer '/path/to/ThetaWave-7B-sft' \ |
|
--tokenizer-mode auto \ |
|
--dtype float16 \ |
|
--enforce-eager \ |
|
--tensor-parallel-size 2 \ |
|
--worker-use-ray \ |
|
--engine-use-ray \ |
|
--host 0.0.0.0 \ |
|
--port 6000 \ |
|
--disable-log-stats \ |
|
--disable-log-requests |
|
``` |
|
|
|
Try it directly: |
|
``` |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained("Liangmingxin/ThetaWave-7B-sft") |
|
tokenizer = AutoTokenizer.from_pretrained("Liangmingxin/ThetaWave-7B-sft") |
|
|
|
messages = [ |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") |
|
|
|
model_inputs = encodeds.to(device) |
|
model.to(device) |
|
|
|
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) |
|
decoded = tokenizer.batch_decode(generated_ids) |
|
print(decoded[0]) |
|
``` |