|
--- |
|
tags: |
|
- transformers |
|
- mteb |
|
model-index: |
|
- name: Linq-Embed-Mistral |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 84.43283582089552 |
|
- type: ap |
|
value: 50.39222584035829 |
|
- type: f1 |
|
value: 78.47906270064071 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 95.70445 |
|
- type: ap |
|
value: 94.28273900595173 |
|
- type: f1 |
|
value: 95.70048412173735 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 57.644000000000005 |
|
- type: f1 |
|
value: 56.993648296704876 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/arguana |
|
name: MTEB ArguAna |
|
config: default |
|
split: test |
|
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a |
|
metrics: |
|
- type: map_at_1 |
|
value: 45.804 |
|
- type: map_at_10 |
|
value: 61.742 |
|
- type: map_at_100 |
|
value: 62.07899999999999 |
|
- type: map_at_1000 |
|
value: 62.08 |
|
- type: map_at_3 |
|
value: 57.717 |
|
- type: map_at_5 |
|
value: 60.27 |
|
- type: mrr_at_1 |
|
value: 47.226 |
|
- type: mrr_at_10 |
|
value: 62.256 |
|
- type: mrr_at_100 |
|
value: 62.601 |
|
- type: mrr_at_1000 |
|
value: 62.601 |
|
- type: mrr_at_3 |
|
value: 58.203 |
|
- type: mrr_at_5 |
|
value: 60.767 |
|
- type: ndcg_at_1 |
|
value: 45.804 |
|
- type: ndcg_at_10 |
|
value: 69.649 |
|
- type: ndcg_at_100 |
|
value: 70.902 |
|
- type: ndcg_at_1000 |
|
value: 70.91199999999999 |
|
- type: ndcg_at_3 |
|
value: 61.497 |
|
- type: ndcg_at_5 |
|
value: 66.097 |
|
- type: precision_at_1 |
|
value: 45.804 |
|
- type: precision_at_10 |
|
value: 9.452 |
|
- type: precision_at_100 |
|
value: 0.996 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 24.135 |
|
- type: precision_at_5 |
|
value: 16.714000000000002 |
|
- type: recall_at_1 |
|
value: 45.804 |
|
- type: recall_at_10 |
|
value: 94.523 |
|
- type: recall_at_100 |
|
value: 99.57300000000001 |
|
- type: recall_at_1000 |
|
value: 99.644 |
|
- type: recall_at_3 |
|
value: 72.404 |
|
- type: recall_at_5 |
|
value: 83.57 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 51.47612678878609 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 47.2977392340418 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 66.82016765243456 |
|
- type: mrr |
|
value: 79.55227982236292 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 89.15068664186332 |
|
- type: cos_sim_spearman |
|
value: 86.4013663041054 |
|
- type: euclidean_pearson |
|
value: 87.36391302921588 |
|
- type: euclidean_spearman |
|
value: 86.4013663041054 |
|
- type: manhattan_pearson |
|
value: 87.46116676558589 |
|
- type: manhattan_spearman |
|
value: 86.78149544753352 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 87.88311688311688 |
|
- type: f1 |
|
value: 87.82368154811464 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 42.72860396750569 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 39.58412067938718 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/cqadupstack |
|
name: MTEB CQADupstackRetrieval |
|
config: default |
|
split: test |
|
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 |
|
metrics: |
|
- type: map_at_1 |
|
value: 30.082666666666665 |
|
- type: map_at_10 |
|
value: 41.13875 |
|
- type: map_at_100 |
|
value: 42.45525 |
|
- type: map_at_1000 |
|
value: 42.561249999999994 |
|
- type: map_at_3 |
|
value: 37.822750000000006 |
|
- type: map_at_5 |
|
value: 39.62658333333333 |
|
- type: mrr_at_1 |
|
value: 35.584 |
|
- type: mrr_at_10 |
|
value: 45.4675 |
|
- type: mrr_at_100 |
|
value: 46.31016666666667 |
|
- type: mrr_at_1000 |
|
value: 46.35191666666666 |
|
- type: mrr_at_3 |
|
value: 42.86674999999999 |
|
- type: mrr_at_5 |
|
value: 44.31341666666666 |
|
- type: ndcg_at_1 |
|
value: 35.584 |
|
- type: ndcg_at_10 |
|
value: 47.26516666666667 |
|
- type: ndcg_at_100 |
|
value: 52.49108333333332 |
|
- type: ndcg_at_1000 |
|
value: 54.24575 |
|
- type: ndcg_at_3 |
|
value: 41.83433333333334 |
|
- type: ndcg_at_5 |
|
value: 44.29899999999999 |
|
- type: precision_at_1 |
|
value: 35.584 |
|
- type: precision_at_10 |
|
value: 8.390333333333334 |
|
- type: precision_at_100 |
|
value: 1.2941666666666667 |
|
- type: precision_at_1000 |
|
value: 0.16308333333333336 |
|
- type: precision_at_3 |
|
value: 19.414583333333333 |
|
- type: precision_at_5 |
|
value: 13.751 |
|
- type: recall_at_1 |
|
value: 30.082666666666665 |
|
- type: recall_at_10 |
|
value: 60.88875 |
|
- type: recall_at_100 |
|
value: 83.35141666666667 |
|
- type: recall_at_1000 |
|
value: 95.0805 |
|
- type: recall_at_3 |
|
value: 45.683749999999996 |
|
- type: recall_at_5 |
|
value: 52.08208333333333 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/climate-fever |
|
name: MTEB ClimateFEVER |
|
config: default |
|
split: test |
|
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 |
|
metrics: |
|
- type: map_at_1 |
|
value: 16.747 |
|
- type: map_at_10 |
|
value: 29.168 |
|
- type: map_at_100 |
|
value: 31.304 |
|
- type: map_at_1000 |
|
value: 31.496000000000002 |
|
- type: map_at_3 |
|
value: 24.57 |
|
- type: map_at_5 |
|
value: 26.886 |
|
- type: mrr_at_1 |
|
value: 37.524 |
|
- type: mrr_at_10 |
|
value: 50.588 |
|
- type: mrr_at_100 |
|
value: 51.28 |
|
- type: mrr_at_1000 |
|
value: 51.29899999999999 |
|
- type: mrr_at_3 |
|
value: 47.438 |
|
- type: mrr_at_5 |
|
value: 49.434 |
|
- type: ndcg_at_1 |
|
value: 37.524 |
|
- type: ndcg_at_10 |
|
value: 39.11 |
|
- type: ndcg_at_100 |
|
value: 46.373999999999995 |
|
- type: ndcg_at_1000 |
|
value: 49.370999999999995 |
|
- type: ndcg_at_3 |
|
value: 32.964 |
|
- type: ndcg_at_5 |
|
value: 35.028 |
|
- type: precision_at_1 |
|
value: 37.524 |
|
- type: precision_at_10 |
|
value: 12.137 |
|
- type: precision_at_100 |
|
value: 1.9929999999999999 |
|
- type: precision_at_1000 |
|
value: 0.256 |
|
- type: precision_at_3 |
|
value: 24.886 |
|
- type: precision_at_5 |
|
value: 18.762 |
|
- type: recall_at_1 |
|
value: 16.747 |
|
- type: recall_at_10 |
|
value: 45.486 |
|
- type: recall_at_100 |
|
value: 69.705 |
|
- type: recall_at_1000 |
|
value: 86.119 |
|
- type: recall_at_3 |
|
value: 30.070999999999998 |
|
- type: recall_at_5 |
|
value: 36.565 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/dbpedia |
|
name: MTEB DBPedia |
|
config: default |
|
split: test |
|
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 |
|
metrics: |
|
- type: map_at_1 |
|
value: 10.495000000000001 |
|
- type: map_at_10 |
|
value: 24.005000000000003 |
|
- type: map_at_100 |
|
value: 34.37 |
|
- type: map_at_1000 |
|
value: 36.268 |
|
- type: map_at_3 |
|
value: 16.694 |
|
- type: map_at_5 |
|
value: 19.845 |
|
- type: mrr_at_1 |
|
value: 75.5 |
|
- type: mrr_at_10 |
|
value: 82.458 |
|
- type: mrr_at_100 |
|
value: 82.638 |
|
- type: mrr_at_1000 |
|
value: 82.64 |
|
- type: mrr_at_3 |
|
value: 81.25 |
|
- type: mrr_at_5 |
|
value: 82.125 |
|
- type: ndcg_at_1 |
|
value: 64.625 |
|
- type: ndcg_at_10 |
|
value: 51.322 |
|
- type: ndcg_at_100 |
|
value: 55.413999999999994 |
|
- type: ndcg_at_1000 |
|
value: 62.169 |
|
- type: ndcg_at_3 |
|
value: 56.818999999999996 |
|
- type: ndcg_at_5 |
|
value: 54.32900000000001 |
|
- type: precision_at_1 |
|
value: 75.5 |
|
- type: precision_at_10 |
|
value: 40.849999999999994 |
|
- type: precision_at_100 |
|
value: 12.882 |
|
- type: precision_at_1000 |
|
value: 2.394 |
|
- type: precision_at_3 |
|
value: 59.667 |
|
- type: precision_at_5 |
|
value: 52.2 |
|
- type: recall_at_1 |
|
value: 10.495000000000001 |
|
- type: recall_at_10 |
|
value: 29.226000000000003 |
|
- type: recall_at_100 |
|
value: 59.614 |
|
- type: recall_at_1000 |
|
value: 81.862 |
|
- type: recall_at_3 |
|
value: 17.97 |
|
- type: recall_at_5 |
|
value: 22.438 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 51.82 |
|
- type: f1 |
|
value: 47.794956731921054 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/fever |
|
name: MTEB FEVER |
|
config: default |
|
split: test |
|
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 |
|
metrics: |
|
- type: map_at_1 |
|
value: 82.52199999999999 |
|
- type: map_at_10 |
|
value: 89.794 |
|
- type: map_at_100 |
|
value: 89.962 |
|
- type: map_at_1000 |
|
value: 89.972 |
|
- type: map_at_3 |
|
value: 88.95100000000001 |
|
- type: map_at_5 |
|
value: 89.524 |
|
- type: mrr_at_1 |
|
value: 88.809 |
|
- type: mrr_at_10 |
|
value: 93.554 |
|
- type: mrr_at_100 |
|
value: 93.577 |
|
- type: mrr_at_1000 |
|
value: 93.577 |
|
- type: mrr_at_3 |
|
value: 93.324 |
|
- type: mrr_at_5 |
|
value: 93.516 |
|
- type: ndcg_at_1 |
|
value: 88.809 |
|
- type: ndcg_at_10 |
|
value: 92.419 |
|
- type: ndcg_at_100 |
|
value: 92.95 |
|
- type: ndcg_at_1000 |
|
value: 93.10000000000001 |
|
- type: ndcg_at_3 |
|
value: 91.45299999999999 |
|
- type: ndcg_at_5 |
|
value: 92.05 |
|
- type: precision_at_1 |
|
value: 88.809 |
|
- type: precision_at_10 |
|
value: 10.911999999999999 |
|
- type: precision_at_100 |
|
value: 1.143 |
|
- type: precision_at_1000 |
|
value: 0.117 |
|
- type: precision_at_3 |
|
value: 34.623 |
|
- type: precision_at_5 |
|
value: 21.343999999999998 |
|
- type: recall_at_1 |
|
value: 82.52199999999999 |
|
- type: recall_at_10 |
|
value: 96.59400000000001 |
|
- type: recall_at_100 |
|
value: 98.55699999999999 |
|
- type: recall_at_1000 |
|
value: 99.413 |
|
- type: recall_at_3 |
|
value: 94.02199999999999 |
|
- type: recall_at_5 |
|
value: 95.582 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/fiqa |
|
name: MTEB FiQA2018 |
|
config: default |
|
split: test |
|
revision: 27a168819829fe9bcd655c2df245fb19452e8e06 |
|
metrics: |
|
- type: map_at_1 |
|
value: 32.842 |
|
- type: map_at_10 |
|
value: 53.147 |
|
- type: map_at_100 |
|
value: 55.265 |
|
- type: map_at_1000 |
|
value: 55.37 |
|
- type: map_at_3 |
|
value: 46.495 |
|
- type: map_at_5 |
|
value: 50.214999999999996 |
|
- type: mrr_at_1 |
|
value: 61.574 |
|
- type: mrr_at_10 |
|
value: 68.426 |
|
- type: mrr_at_100 |
|
value: 68.935 |
|
- type: mrr_at_1000 |
|
value: 68.95400000000001 |
|
- type: mrr_at_3 |
|
value: 66.307 |
|
- type: mrr_at_5 |
|
value: 67.611 |
|
- type: ndcg_at_1 |
|
value: 61.574 |
|
- type: ndcg_at_10 |
|
value: 61.205 |
|
- type: ndcg_at_100 |
|
value: 67.25999999999999 |
|
- type: ndcg_at_1000 |
|
value: 68.657 |
|
- type: ndcg_at_3 |
|
value: 56.717 |
|
- type: ndcg_at_5 |
|
value: 58.196999999999996 |
|
- type: precision_at_1 |
|
value: 61.574 |
|
- type: precision_at_10 |
|
value: 16.852 |
|
- type: precision_at_100 |
|
value: 2.33 |
|
- type: precision_at_1000 |
|
value: 0.256 |
|
- type: precision_at_3 |
|
value: 37.5 |
|
- type: precision_at_5 |
|
value: 27.468999999999998 |
|
- type: recall_at_1 |
|
value: 32.842 |
|
- type: recall_at_10 |
|
value: 68.157 |
|
- type: recall_at_100 |
|
value: 89.5 |
|
- type: recall_at_1000 |
|
value: 97.68599999999999 |
|
- type: recall_at_3 |
|
value: 50.783 |
|
- type: recall_at_5 |
|
value: 58.672000000000004 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/hotpotqa |
|
name: MTEB HotpotQA |
|
config: default |
|
split: test |
|
revision: ab518f4d6fcca38d87c25209f94beba119d02014 |
|
metrics: |
|
- type: map_at_1 |
|
value: 39.068000000000005 |
|
- type: map_at_10 |
|
value: 69.253 |
|
- type: map_at_100 |
|
value: 70.036 |
|
- type: map_at_1000 |
|
value: 70.081 |
|
- type: map_at_3 |
|
value: 65.621 |
|
- type: map_at_5 |
|
value: 67.976 |
|
- type: mrr_at_1 |
|
value: 78.13600000000001 |
|
- type: mrr_at_10 |
|
value: 84.328 |
|
- type: mrr_at_100 |
|
value: 84.515 |
|
- type: mrr_at_1000 |
|
value: 84.52300000000001 |
|
- type: mrr_at_3 |
|
value: 83.52199999999999 |
|
- type: mrr_at_5 |
|
value: 84.019 |
|
- type: ndcg_at_1 |
|
value: 78.13600000000001 |
|
- type: ndcg_at_10 |
|
value: 76.236 |
|
- type: ndcg_at_100 |
|
value: 78.891 |
|
- type: ndcg_at_1000 |
|
value: 79.73400000000001 |
|
- type: ndcg_at_3 |
|
value: 71.258 |
|
- type: ndcg_at_5 |
|
value: 74.129 |
|
- type: precision_at_1 |
|
value: 78.13600000000001 |
|
- type: precision_at_10 |
|
value: 16.347 |
|
- type: precision_at_100 |
|
value: 1.839 |
|
- type: precision_at_1000 |
|
value: 0.19499999999999998 |
|
- type: precision_at_3 |
|
value: 47.189 |
|
- type: precision_at_5 |
|
value: 30.581999999999997 |
|
- type: recall_at_1 |
|
value: 39.068000000000005 |
|
- type: recall_at_10 |
|
value: 81.735 |
|
- type: recall_at_100 |
|
value: 91.945 |
|
- type: recall_at_1000 |
|
value: 97.44800000000001 |
|
- type: recall_at_3 |
|
value: 70.783 |
|
- type: recall_at_5 |
|
value: 76.455 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 94.7764 |
|
- type: ap |
|
value: 92.67841294818406 |
|
- type: f1 |
|
value: 94.77375157383646 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/msmarco |
|
name: MTEB MSMARCO |
|
config: default |
|
split: dev |
|
revision: c5a29a104738b98a9e76336939199e264163d4a0 |
|
metrics: |
|
- type: map_at_1 |
|
value: 24.624 |
|
- type: map_at_10 |
|
value: 37.861 |
|
- type: map_at_100 |
|
value: 39.011 |
|
- type: map_at_1000 |
|
value: 39.052 |
|
- type: map_at_3 |
|
value: 33.76 |
|
- type: map_at_5 |
|
value: 36.153 |
|
- type: mrr_at_1 |
|
value: 25.358000000000004 |
|
- type: mrr_at_10 |
|
value: 38.5 |
|
- type: mrr_at_100 |
|
value: 39.572 |
|
- type: mrr_at_1000 |
|
value: 39.607 |
|
- type: mrr_at_3 |
|
value: 34.491 |
|
- type: mrr_at_5 |
|
value: 36.83 |
|
- type: ndcg_at_1 |
|
value: 25.358000000000004 |
|
- type: ndcg_at_10 |
|
value: 45.214999999999996 |
|
- type: ndcg_at_100 |
|
value: 50.56 |
|
- type: ndcg_at_1000 |
|
value: 51.507999999999996 |
|
- type: ndcg_at_3 |
|
value: 36.925999999999995 |
|
- type: ndcg_at_5 |
|
value: 41.182 |
|
- type: precision_at_1 |
|
value: 25.358000000000004 |
|
- type: precision_at_10 |
|
value: 7.090000000000001 |
|
- type: precision_at_100 |
|
value: 0.9740000000000001 |
|
- type: precision_at_1000 |
|
value: 0.106 |
|
- type: precision_at_3 |
|
value: 15.697 |
|
- type: precision_at_5 |
|
value: 11.599 |
|
- type: recall_at_1 |
|
value: 24.624 |
|
- type: recall_at_10 |
|
value: 67.78699999999999 |
|
- type: recall_at_100 |
|
value: 92.11200000000001 |
|
- type: recall_at_1000 |
|
value: 99.208 |
|
- type: recall_at_3 |
|
value: 45.362 |
|
- type: recall_at_5 |
|
value: 55.58 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 96.83310533515733 |
|
- type: f1 |
|
value: 96.57069781347995 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 89.5690834473324 |
|
- type: f1 |
|
value: 73.7275204564728 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 82.67316745124411 |
|
- type: f1 |
|
value: 79.70626515721662 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 85.01344989912575 |
|
- type: f1 |
|
value: 84.45181022816965 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 37.843426126777295 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 36.651728547241476 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/mind_small |
|
name: MTEB MindSmallReranking |
|
config: default |
|
split: test |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
metrics: |
|
- type: map |
|
value: 32.05750522793288 |
|
- type: mrr |
|
value: 33.28067556869468 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/nfcorpus |
|
name: MTEB NFCorpus |
|
config: default |
|
split: test |
|
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.744 |
|
- type: map_at_10 |
|
value: 16.235 |
|
- type: map_at_100 |
|
value: 20.767 |
|
- type: map_at_1000 |
|
value: 22.469 |
|
- type: map_at_3 |
|
value: 11.708 |
|
- type: map_at_5 |
|
value: 13.924 |
|
- type: mrr_at_1 |
|
value: 55.728 |
|
- type: mrr_at_10 |
|
value: 63.869 |
|
- type: mrr_at_100 |
|
value: 64.322 |
|
- type: mrr_at_1000 |
|
value: 64.342 |
|
- type: mrr_at_3 |
|
value: 62.022999999999996 |
|
- type: mrr_at_5 |
|
value: 63.105999999999995 |
|
- type: ndcg_at_1 |
|
value: 53.096 |
|
- type: ndcg_at_10 |
|
value: 41.618 |
|
- type: ndcg_at_100 |
|
value: 38.562999999999995 |
|
- type: ndcg_at_1000 |
|
value: 47.006 |
|
- type: ndcg_at_3 |
|
value: 47.657 |
|
- type: ndcg_at_5 |
|
value: 45.562999999999995 |
|
- type: precision_at_1 |
|
value: 55.108000000000004 |
|
- type: precision_at_10 |
|
value: 30.464000000000002 |
|
- type: precision_at_100 |
|
value: 9.737 |
|
- type: precision_at_1000 |
|
value: 2.2720000000000002 |
|
- type: precision_at_3 |
|
value: 44.376 |
|
- type: precision_at_5 |
|
value: 39.505 |
|
- type: recall_at_1 |
|
value: 6.744 |
|
- type: recall_at_10 |
|
value: 21.11 |
|
- type: recall_at_100 |
|
value: 39.69 |
|
- type: recall_at_1000 |
|
value: 70.44 |
|
- type: recall_at_3 |
|
value: 13.120000000000001 |
|
- type: recall_at_5 |
|
value: 16.669 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/nq |
|
name: MTEB NQ |
|
config: default |
|
split: test |
|
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 |
|
metrics: |
|
- type: map_at_1 |
|
value: 46.263 |
|
- type: map_at_10 |
|
value: 63.525 |
|
- type: map_at_100 |
|
value: 64.142 |
|
- type: map_at_1000 |
|
value: 64.14800000000001 |
|
- type: map_at_3 |
|
value: 59.653 |
|
- type: map_at_5 |
|
value: 62.244 |
|
- type: mrr_at_1 |
|
value: 51.796 |
|
- type: mrr_at_10 |
|
value: 65.764 |
|
- type: mrr_at_100 |
|
value: 66.155 |
|
- type: mrr_at_1000 |
|
value: 66.158 |
|
- type: mrr_at_3 |
|
value: 63.05500000000001 |
|
- type: mrr_at_5 |
|
value: 64.924 |
|
- type: ndcg_at_1 |
|
value: 51.766999999999996 |
|
- type: ndcg_at_10 |
|
value: 70.626 |
|
- type: ndcg_at_100 |
|
value: 72.905 |
|
- type: ndcg_at_1000 |
|
value: 73.021 |
|
- type: ndcg_at_3 |
|
value: 63.937999999999995 |
|
- type: ndcg_at_5 |
|
value: 68.00699999999999 |
|
- type: precision_at_1 |
|
value: 51.766999999999996 |
|
- type: precision_at_10 |
|
value: 10.768 |
|
- type: precision_at_100 |
|
value: 1.203 |
|
- type: precision_at_1000 |
|
value: 0.121 |
|
- type: precision_at_3 |
|
value: 28.409000000000002 |
|
- type: precision_at_5 |
|
value: 19.502 |
|
- type: recall_at_1 |
|
value: 46.263 |
|
- type: recall_at_10 |
|
value: 89.554 |
|
- type: recall_at_100 |
|
value: 98.914 |
|
- type: recall_at_1000 |
|
value: 99.754 |
|
- type: recall_at_3 |
|
value: 72.89999999999999 |
|
- type: recall_at_5 |
|
value: 82.1 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: e4e08e0b7dbe3c8700f0daef558ff32256715259 |
|
metrics: |
|
- type: map_at_1 |
|
value: 72.748 |
|
- type: map_at_10 |
|
value: 86.87700000000001 |
|
- type: map_at_100 |
|
value: 87.46199999999999 |
|
- type: map_at_1000 |
|
value: 87.47399999999999 |
|
- type: map_at_3 |
|
value: 83.95700000000001 |
|
- type: map_at_5 |
|
value: 85.82300000000001 |
|
- type: mrr_at_1 |
|
value: 83.62 |
|
- type: mrr_at_10 |
|
value: 89.415 |
|
- type: mrr_at_100 |
|
value: 89.484 |
|
- type: mrr_at_1000 |
|
value: 89.484 |
|
- type: mrr_at_3 |
|
value: 88.633 |
|
- type: mrr_at_5 |
|
value: 89.176 |
|
- type: ndcg_at_1 |
|
value: 83.62 |
|
- type: ndcg_at_10 |
|
value: 90.27 |
|
- type: ndcg_at_100 |
|
value: 91.23599999999999 |
|
- type: ndcg_at_1000 |
|
value: 91.293 |
|
- type: ndcg_at_3 |
|
value: 87.69500000000001 |
|
- type: ndcg_at_5 |
|
value: 89.171 |
|
- type: precision_at_1 |
|
value: 83.62 |
|
- type: precision_at_10 |
|
value: 13.683 |
|
- type: precision_at_100 |
|
value: 1.542 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 38.363 |
|
- type: precision_at_5 |
|
value: 25.196 |
|
- type: recall_at_1 |
|
value: 72.748 |
|
- type: recall_at_10 |
|
value: 96.61699999999999 |
|
- type: recall_at_100 |
|
value: 99.789 |
|
- type: recall_at_1000 |
|
value: 99.997 |
|
- type: recall_at_3 |
|
value: 89.21 |
|
- type: recall_at_5 |
|
value: 93.418 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 61.51909029379199 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 385e3cb46b4cfa89021f56c4380204149d0efe33 |
|
metrics: |
|
- type: v_measure |
|
value: 68.24483162045645 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/scidocs |
|
name: MTEB SCIDOCS |
|
config: default |
|
split: test |
|
revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88 |
|
metrics: |
|
- type: map_at_1 |
|
value: 4.793 |
|
- type: map_at_10 |
|
value: 13.092 |
|
- type: map_at_100 |
|
value: 15.434000000000001 |
|
- type: map_at_1000 |
|
value: 15.748999999999999 |
|
- type: map_at_3 |
|
value: 9.139 |
|
- type: map_at_5 |
|
value: 11.033 |
|
- type: mrr_at_1 |
|
value: 23.599999999999998 |
|
- type: mrr_at_10 |
|
value: 35.892 |
|
- type: mrr_at_100 |
|
value: 36.962 |
|
- type: mrr_at_1000 |
|
value: 37.009 |
|
- type: mrr_at_3 |
|
value: 32.550000000000004 |
|
- type: mrr_at_5 |
|
value: 34.415 |
|
- type: ndcg_at_1 |
|
value: 23.599999999999998 |
|
- type: ndcg_at_10 |
|
value: 21.932 |
|
- type: ndcg_at_100 |
|
value: 30.433 |
|
- type: ndcg_at_1000 |
|
value: 35.668 |
|
- type: ndcg_at_3 |
|
value: 20.483999999999998 |
|
- type: ndcg_at_5 |
|
value: 17.964 |
|
- type: precision_at_1 |
|
value: 23.599999999999998 |
|
- type: precision_at_10 |
|
value: 11.63 |
|
- type: precision_at_100 |
|
value: 2.383 |
|
- type: precision_at_1000 |
|
value: 0.363 |
|
- type: precision_at_3 |
|
value: 19.567 |
|
- type: precision_at_5 |
|
value: 16.06 |
|
- type: recall_at_1 |
|
value: 4.793 |
|
- type: recall_at_10 |
|
value: 23.558 |
|
- type: recall_at_100 |
|
value: 48.376999999999995 |
|
- type: recall_at_1000 |
|
value: 73.75699999999999 |
|
- type: recall_at_3 |
|
value: 11.903 |
|
- type: recall_at_5 |
|
value: 16.278000000000002 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: 20a6d6f312dd54037fe07a32d58e5e168867909d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.31937967632581 |
|
- type: cos_sim_spearman |
|
value: 84.30523596401186 |
|
- type: euclidean_pearson |
|
value: 84.19537987069458 |
|
- type: euclidean_spearman |
|
value: 84.30522052876 |
|
- type: manhattan_pearson |
|
value: 84.16420807244911 |
|
- type: manhattan_spearman |
|
value: 84.28515410219309 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.17180810119646 |
|
- type: cos_sim_spearman |
|
value: 78.44413657529002 |
|
- type: euclidean_pearson |
|
value: 81.69054139101816 |
|
- type: euclidean_spearman |
|
value: 78.44412412142488 |
|
- type: manhattan_pearson |
|
value: 82.04975789626462 |
|
- type: manhattan_spearman |
|
value: 78.78390856857253 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.35737871089687 |
|
- type: cos_sim_spearman |
|
value: 88.26850223126127 |
|
- type: euclidean_pearson |
|
value: 87.44100858335746 |
|
- type: euclidean_spearman |
|
value: 88.26850223126127 |
|
- type: manhattan_pearson |
|
value: 87.61572015772133 |
|
- type: manhattan_spearman |
|
value: 88.56229552813319 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.8395966764906 |
|
- type: cos_sim_spearman |
|
value: 84.49441798385489 |
|
- type: euclidean_pearson |
|
value: 85.3259176121388 |
|
- type: euclidean_spearman |
|
value: 84.49442124804686 |
|
- type: manhattan_pearson |
|
value: 85.35153862806513 |
|
- type: manhattan_spearman |
|
value: 84.60094577432503 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 90.14048269057345 |
|
- type: cos_sim_spearman |
|
value: 90.27866978947013 |
|
- type: euclidean_pearson |
|
value: 89.35308361940393 |
|
- type: euclidean_spearman |
|
value: 90.27866978947013 |
|
- type: manhattan_pearson |
|
value: 89.37601244066997 |
|
- type: manhattan_spearman |
|
value: 90.42707449698062 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.8522678865688 |
|
- type: cos_sim_spearman |
|
value: 87.37396401580446 |
|
- type: euclidean_pearson |
|
value: 86.37219665505377 |
|
- type: euclidean_spearman |
|
value: 87.37396385867791 |
|
- type: manhattan_pearson |
|
value: 86.44628823799896 |
|
- type: manhattan_spearman |
|
value: 87.49116026788859 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 92.94248481968916 |
|
- type: cos_sim_spearman |
|
value: 92.68185242943188 |
|
- type: euclidean_pearson |
|
value: 92.33802342092979 |
|
- type: euclidean_spearman |
|
value: 92.68185242943188 |
|
- type: manhattan_pearson |
|
value: 92.2011323340474 |
|
- type: manhattan_spearman |
|
value: 92.43364757640346 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 70.2918782293091 |
|
- type: cos_sim_spearman |
|
value: 68.61986257003369 |
|
- type: euclidean_pearson |
|
value: 70.51920905899138 |
|
- type: euclidean_spearman |
|
value: 68.61986257003369 |
|
- type: manhattan_pearson |
|
value: 70.64673843811433 |
|
- type: manhattan_spearman |
|
value: 68.86711466517345 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 88.62956838105524 |
|
- type: cos_sim_spearman |
|
value: 88.80650007123052 |
|
- type: euclidean_pearson |
|
value: 88.37976252122822 |
|
- type: euclidean_spearman |
|
value: 88.80650007123052 |
|
- type: manhattan_pearson |
|
value: 88.49866938476616 |
|
- type: manhattan_spearman |
|
value: 89.02489665452616 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 86.40175229911527 |
|
- type: mrr |
|
value: 96.61958230585682 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/scifact |
|
name: MTEB SciFact |
|
config: default |
|
split: test |
|
revision: 0228b52cf27578f30900b9e5271d331663a030d7 |
|
metrics: |
|
- type: map_at_1 |
|
value: 63.05 |
|
- type: map_at_10 |
|
value: 73.844 |
|
- type: map_at_100 |
|
value: 74.313 |
|
- type: map_at_1000 |
|
value: 74.321 |
|
- type: map_at_3 |
|
value: 71.17999999999999 |
|
- type: map_at_5 |
|
value: 72.842 |
|
- type: mrr_at_1 |
|
value: 65.667 |
|
- type: mrr_at_10 |
|
value: 74.772 |
|
- type: mrr_at_100 |
|
value: 75.087 |
|
- type: mrr_at_1000 |
|
value: 75.095 |
|
- type: mrr_at_3 |
|
value: 72.944 |
|
- type: mrr_at_5 |
|
value: 74.078 |
|
- type: ndcg_at_1 |
|
value: 65.667 |
|
- type: ndcg_at_10 |
|
value: 78.31700000000001 |
|
- type: ndcg_at_100 |
|
value: 79.969 |
|
- type: ndcg_at_1000 |
|
value: 80.25 |
|
- type: ndcg_at_3 |
|
value: 74.099 |
|
- type: ndcg_at_5 |
|
value: 76.338 |
|
- type: precision_at_1 |
|
value: 65.667 |
|
- type: precision_at_10 |
|
value: 10.233 |
|
- type: precision_at_100 |
|
value: 1.107 |
|
- type: precision_at_1000 |
|
value: 0.11299999999999999 |
|
- type: precision_at_3 |
|
value: 28.889 |
|
- type: precision_at_5 |
|
value: 19.0 |
|
- type: recall_at_1 |
|
value: 63.05 |
|
- type: recall_at_10 |
|
value: 90.822 |
|
- type: recall_at_100 |
|
value: 97.667 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 79.489 |
|
- type: recall_at_5 |
|
value: 85.161 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.83564356435643 |
|
- type: cos_sim_ap |
|
value: 96.10619363017767 |
|
- type: cos_sim_f1 |
|
value: 91.61225514816677 |
|
- type: cos_sim_precision |
|
value: 92.02825428859738 |
|
- type: cos_sim_recall |
|
value: 91.2 |
|
- type: dot_accuracy |
|
value: 99.83564356435643 |
|
- type: dot_ap |
|
value: 96.10619363017767 |
|
- type: dot_f1 |
|
value: 91.61225514816677 |
|
- type: dot_precision |
|
value: 92.02825428859738 |
|
- type: dot_recall |
|
value: 91.2 |
|
- type: euclidean_accuracy |
|
value: 99.83564356435643 |
|
- type: euclidean_ap |
|
value: 96.10619363017769 |
|
- type: euclidean_f1 |
|
value: 91.61225514816677 |
|
- type: euclidean_precision |
|
value: 92.02825428859738 |
|
- type: euclidean_recall |
|
value: 91.2 |
|
- type: manhattan_accuracy |
|
value: 99.84158415841584 |
|
- type: manhattan_ap |
|
value: 96.27527798658713 |
|
- type: manhattan_f1 |
|
value: 92.0 |
|
- type: manhattan_precision |
|
value: 92.0 |
|
- type: manhattan_recall |
|
value: 92.0 |
|
- type: max_accuracy |
|
value: 99.84158415841584 |
|
- type: max_ap |
|
value: 96.27527798658713 |
|
- type: max_f1 |
|
value: 92.0 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 76.93753872885304 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 46.044085080870126 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 55.885129730227256 |
|
- type: mrr |
|
value: 56.95062494694848 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 31.202047940935508 |
|
- type: cos_sim_spearman |
|
value: 30.984832035722228 |
|
- type: dot_pearson |
|
value: 31.20204247226978 |
|
- type: dot_spearman |
|
value: 30.984832035722228 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/trec-covid |
|
name: MTEB TRECCOVID |
|
config: default |
|
split: test |
|
revision: bb9466bac8153a0349341eb1b22e06409e78ef4e |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.245 |
|
- type: map_at_10 |
|
value: 2.249 |
|
- type: map_at_100 |
|
value: 14.85 |
|
- type: map_at_1000 |
|
value: 36.596000000000004 |
|
- type: map_at_3 |
|
value: 0.717 |
|
- type: map_at_5 |
|
value: 1.18 |
|
- type: mrr_at_1 |
|
value: 94.0 |
|
- type: mrr_at_10 |
|
value: 96.167 |
|
- type: mrr_at_100 |
|
value: 96.167 |
|
- type: mrr_at_1000 |
|
value: 96.167 |
|
- type: mrr_at_3 |
|
value: 95.667 |
|
- type: mrr_at_5 |
|
value: 96.167 |
|
- type: ndcg_at_1 |
|
value: 91.0 |
|
- type: ndcg_at_10 |
|
value: 87.09700000000001 |
|
- type: ndcg_at_100 |
|
value: 69.637 |
|
- type: ndcg_at_1000 |
|
value: 62.257 |
|
- type: ndcg_at_3 |
|
value: 90.235 |
|
- type: ndcg_at_5 |
|
value: 89.51400000000001 |
|
- type: precision_at_1 |
|
value: 94.0 |
|
- type: precision_at_10 |
|
value: 90.60000000000001 |
|
- type: precision_at_100 |
|
value: 71.38 |
|
- type: precision_at_1000 |
|
value: 27.400000000000002 |
|
- type: precision_at_3 |
|
value: 94.0 |
|
- type: precision_at_5 |
|
value: 93.2 |
|
- type: recall_at_1 |
|
value: 0.245 |
|
- type: recall_at_10 |
|
value: 2.366 |
|
- type: recall_at_100 |
|
value: 17.491 |
|
- type: recall_at_1000 |
|
value: 58.772999999999996 |
|
- type: recall_at_3 |
|
value: 0.7270000000000001 |
|
- type: recall_at_5 |
|
value: 1.221 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: mteb/touche2020 |
|
name: MTEB Touche2020 |
|
config: default |
|
split: test |
|
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f |
|
metrics: |
|
- type: map_at_1 |
|
value: 3.435 |
|
- type: map_at_10 |
|
value: 12.147 |
|
- type: map_at_100 |
|
value: 18.724 |
|
- type: map_at_1000 |
|
value: 20.426 |
|
- type: map_at_3 |
|
value: 6.526999999999999 |
|
- type: map_at_5 |
|
value: 9.198 |
|
- type: mrr_at_1 |
|
value: 48.980000000000004 |
|
- type: mrr_at_10 |
|
value: 62.970000000000006 |
|
- type: mrr_at_100 |
|
value: 63.288999999999994 |
|
- type: mrr_at_1000 |
|
value: 63.288999999999994 |
|
- type: mrr_at_3 |
|
value: 59.184000000000005 |
|
- type: mrr_at_5 |
|
value: 61.224000000000004 |
|
- type: ndcg_at_1 |
|
value: 46.939 |
|
- type: ndcg_at_10 |
|
value: 30.61 |
|
- type: ndcg_at_100 |
|
value: 41.683 |
|
- type: ndcg_at_1000 |
|
value: 53.144000000000005 |
|
- type: ndcg_at_3 |
|
value: 36.284 |
|
- type: ndcg_at_5 |
|
value: 34.345 |
|
- type: precision_at_1 |
|
value: 48.980000000000004 |
|
- type: precision_at_10 |
|
value: 26.122 |
|
- type: precision_at_100 |
|
value: 8.204 |
|
- type: precision_at_1000 |
|
value: 1.6019999999999999 |
|
- type: precision_at_3 |
|
value: 35.374 |
|
- type: precision_at_5 |
|
value: 32.653 |
|
- type: recall_at_1 |
|
value: 3.435 |
|
- type: recall_at_10 |
|
value: 18.953 |
|
- type: recall_at_100 |
|
value: 50.775000000000006 |
|
- type: recall_at_1000 |
|
value: 85.858 |
|
- type: recall_at_3 |
|
value: 7.813000000000001 |
|
- type: recall_at_5 |
|
value: 11.952 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de |
|
metrics: |
|
- type: accuracy |
|
value: 71.2938 |
|
- type: ap |
|
value: 15.090139095602268 |
|
- type: f1 |
|
value: 55.23862650598296 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 64.7623089983022 |
|
- type: f1 |
|
value: 65.07617131099336 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 57.2988222684939 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 88.6034451928235 |
|
- type: cos_sim_ap |
|
value: 81.51815279166863 |
|
- type: cos_sim_f1 |
|
value: 74.43794671864849 |
|
- type: cos_sim_precision |
|
value: 73.34186939820742 |
|
- type: cos_sim_recall |
|
value: 75.56728232189973 |
|
- type: dot_accuracy |
|
value: 88.6034451928235 |
|
- type: dot_ap |
|
value: 81.51816956866841 |
|
- type: dot_f1 |
|
value: 74.43794671864849 |
|
- type: dot_precision |
|
value: 73.34186939820742 |
|
- type: dot_recall |
|
value: 75.56728232189973 |
|
- type: euclidean_accuracy |
|
value: 88.6034451928235 |
|
- type: euclidean_ap |
|
value: 81.51817015121485 |
|
- type: euclidean_f1 |
|
value: 74.43794671864849 |
|
- type: euclidean_precision |
|
value: 73.34186939820742 |
|
- type: euclidean_recall |
|
value: 75.56728232189973 |
|
- type: manhattan_accuracy |
|
value: 88.5736424867378 |
|
- type: manhattan_ap |
|
value: 81.37610101292196 |
|
- type: manhattan_f1 |
|
value: 74.2504182215931 |
|
- type: manhattan_precision |
|
value: 72.46922883697563 |
|
- type: manhattan_recall |
|
value: 76.12137203166228 |
|
- type: max_accuracy |
|
value: 88.6034451928235 |
|
- type: max_ap |
|
value: 81.51817015121485 |
|
- type: max_f1 |
|
value: 74.43794671864849 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 89.53118329646446 |
|
- type: cos_sim_ap |
|
value: 87.41972033060013 |
|
- type: cos_sim_f1 |
|
value: 79.4392523364486 |
|
- type: cos_sim_precision |
|
value: 75.53457372951958 |
|
- type: cos_sim_recall |
|
value: 83.7696335078534 |
|
- type: dot_accuracy |
|
value: 89.53118329646446 |
|
- type: dot_ap |
|
value: 87.41971646088945 |
|
- type: dot_f1 |
|
value: 79.4392523364486 |
|
- type: dot_precision |
|
value: 75.53457372951958 |
|
- type: dot_recall |
|
value: 83.7696335078534 |
|
- type: euclidean_accuracy |
|
value: 89.53118329646446 |
|
- type: euclidean_ap |
|
value: 87.41972415605997 |
|
- type: euclidean_f1 |
|
value: 79.4392523364486 |
|
- type: euclidean_precision |
|
value: 75.53457372951958 |
|
- type: euclidean_recall |
|
value: 83.7696335078534 |
|
- type: manhattan_accuracy |
|
value: 89.5855163581325 |
|
- type: manhattan_ap |
|
value: 87.51158697451964 |
|
- type: manhattan_f1 |
|
value: 79.54455087655883 |
|
- type: manhattan_precision |
|
value: 74.96763643796416 |
|
- type: manhattan_recall |
|
value: 84.71666153372344 |
|
- type: max_accuracy |
|
value: 89.5855163581325 |
|
- type: max_ap |
|
value: 87.51158697451964 |
|
- type: max_f1 |
|
value: 79.54455087655883 |
|
language: |
|
- en |
|
license: cc-by-nc-4.0 |
|
--- |
|
<h1 align="center">Linq-AI-Research/Linq-Embed-Mistral</h1> |
|
|
|
**Linq-Embed-Mistral** |
|
|
|
Linq-Embed-Mistral has been developed by building upon the foundations of the [E5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) and [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) models. We focus on improving text retrieval using advanced data refinement methods, including sophisticated data crafting, data filtering, and negative mining guided by teacher models, which are highly tailored to each task, to improve the quality of the synthetic data generated by LLM. These methods are applied to both existing benchmark dataset and highly tailored synthetic dataset generated via LLMs. Our efforts primarily aim to create high-quality triplet datasets (query, positive example, negative example), significantly improving text retrieval performance. |
|
|
|
Linq-Embed-Mistral performs well in the MTEB benchmarks. The model excels in retrieval tasks, ranking <ins>**`1st`**</ins> among all models listed on the MTEB leaderboard with a performance score of <ins>**`60.2`**</ins>. This outstanding performance underscores its superior capability in enhancing search precision and reliability. The model achieves an average score of <ins>**`68.2`**</ins> across 56 datasets in the MTEB benchmarks, making it the highest-ranking publicly accessible model and third overall. |
|
|
|
|
|
This project is for research purposes only. Third-party datasets may be subject to additional terms and conditions under their associated licenses. Please refer to specific papers for more details: |
|
|
|
- [MTEB benchmark](https://arxiv.org/abs/2210.07316) |
|
- [Mistral](https://arxiv.org/abs/2310.06825) |
|
- [E5-mistral-7b-instruct](https://arxiv.org/pdf/2401.00368.pdf) |
|
|
|
For more details, refer to [this blog post](https://getlinq.com/blog/linq-embed-mistral/) and [this report()]. |
|
|
|
## How to use |
|
|
|
### Transformers |
|
|
|
Here is an example of how to encode queries and passages from the Mr.TyDi training dataset. |
|
|
|
```python |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
def last_token_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) |
|
if left_padding: |
|
return last_hidden_states[:, -1] |
|
else: |
|
sequence_lengths = attention_mask.sum(dim=1) - 1 |
|
batch_size = last_hidden_states.shape[0] |
|
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] |
|
|
|
def get_detailed_instruct(task_description: str, query: str) -> str: |
|
return f'Instruct: {task_description}\nQuery: {query}' |
|
|
|
# Each query must come with a one-sentence instruction that describes the task |
|
task = 'Given a question, retrieve Wikipedia passages that answer the question' |
|
queries = [ |
|
get_detailed_instruct(task, '최초의 원자력 발전소는 무엇인가?'), |
|
get_detailed_instruct(task, 'Who invented Hangul?') |
|
] |
|
# No need to add instruction for retrieval documents |
|
passages = [ |
|
"현재 사용되는 핵분열 방식을 이용한 전력생산은 1948년 9월 미국 테네시주 오크리지에 설치된 X-10 흑연원자로에서 전구의 불을 밝히는 데 사용되면서 시작되었다. 그리고 1954년 6월에 구소련의 오브닌스크에 건설된 흑연감속 비등경수 압력관형 원자로를 사용한 오브닌스크 원자력 발전소가 시험적으로 전력생산을 시작하였고, 최초의 상업용 원자력 엉더이로를 사용한 영국 셀라필드 원자력 단지에 위치한 콜더 홀(Calder Hall) 원자력 발전소로, 1956년 10월 17일 상업 운전을 시작하였다.", |
|
"Hangul was personally created and promulgated by the fourth king of the Joseon dynasty, Sejong the Great.[1][2] Sejong's scholarly institute, the Hall of Worthies, is often credited with the work, and at least one of its scholars was heavily involved in its creation, but it appears to have also been a personal project of Sejong." |
|
] |
|
|
|
# Load model and tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained('Linq-AI-Research/Linq-Embed-Mistral') |
|
model = AutoModel.from_pretrained('Linq-AI-Research/Linq-Embed-Mistral') |
|
|
|
max_length = 4096 |
|
input_texts = [*queries, *passages] |
|
# Tokenize the input texts |
|
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors="pt") |
|
outputs = model(**batch_dict) |
|
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
|
|
# Normalize embeddings |
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
scores = (embeddings[:2] @ embeddings[2:].T) * 100 |
|
print(scores.tolist()) |
|
# [[73.72909545898438, 30.122783660888672], [29.155078887939453, 79.25374603271484]] |
|
``` |
|
|
|
### MTEB Benchmark Evaluation |
|
|
|
Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB](https://arxiv.org/abs/2210.07316) benchmark. |
|
|
|
## Evaluation Result |
|
|
|
### MTEB |
|
|
|
| Model Name | Retrieval (15) | Average (56) | |
|
| :------------------------------------------------------------------------------: | :------------: | :----------: | |
|
| [Linq-Embed-Mistral](https://huggingface.co/Linq-AI-Research/Linq-Embed-Mistral) | 60.2 | 68.2 | |
|
| [NV-Embed-v1](https://huggingface.co/nvidia/NV-Embed-v1) | 59.4 | 69.3 | |
|
| [SFR-Embedding-Mistral](https://huggingface.co/Salesforce/SFR-Embedding-Mistral) | 59.0 | 67.6 | |
|
| [voyage-large-2-instruct](https://docs.voyageai.com/docs/embeddings) | 58.3 | 68.3 | |
|
| [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) | 57.4 | 66.8 | |
|
| [voyage-lite-02-instruct](https://docs.voyageai.com/docs/embeddings) | 56.6 | 67.1 | |
|
|[gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct)| 56.2 | 67.3 | |
|
| [e5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) | 56.9 | 66.6 | |
|
|[google-gecko.text-embedding-preview-0409](https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings?hl=ko#latest_models)| 55.7 | 66.3 | |
|
|[text-embedding-3-large](https://openai.com/index/new-embedding-models-and-api-updates/)| 55.4 | 64.6 | |
|
|[Cohere-embed-english-v3.0](https://huggingface.co/Cohere/Cohere-embed-english-v3.0)| 55.0 | 64.5 | |
|
|
|
# Linq Research Team. |
|
|
|
- [Junseong Kim](https://huggingface.co/Junseong) |
|
- Seolhwa Lee |
|
- [Jihoon Kwon](https://huggingface.co/Mayfull) |
|
- Sangmo Gu |
|
- Yejin Kim |
|
- Minkyung Cho |
|
- Jy-yong Sohn |
|
- Chanyeol Choi |
|
|
|
# Citation |
|
|
|
```bibtex |
|
@misc{LinqAIResearch2024, |
|
title={Linq-Embed-Mistral:Elevating Text Retrieval with Improved GPT Data Through Task-Specific Control and Quality Refinement}, |
|
author={Junseong Kim, Seolhwa Lee, Jihoon Kwon, Sangmo Gu, Yejin Kim, Minkyung Cho, Jy-yong Sohn, Chanyeol Choi}, |
|
howpublished={Linq AI Research Blog}, |
|
year={2024}, |
|
url={https://getlinq.com/blog/linq-embed-mistral/} |
|
} |
|
``` |
|
|