metadata
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: Phi0503HMA14
results: []
Phi0503HMA14
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2116
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.4198 | 0.09 | 10 | 0.8548 |
0.39 | 0.18 | 20 | 0.2326 |
0.252 | 0.27 | 30 | 0.2846 |
0.2462 | 0.36 | 40 | 0.2193 |
0.2423 | 0.45 | 50 | 0.2019 |
0.2152 | 0.54 | 60 | 0.2022 |
0.1802 | 0.63 | 70 | 0.1667 |
0.1672 | 0.73 | 80 | 0.1670 |
0.1789 | 0.82 | 90 | 0.1745 |
0.1677 | 0.91 | 100 | 0.1295 |
0.3324 | 1.0 | 110 | 0.1976 |
0.1712 | 1.09 | 120 | 0.1097 |
0.0986 | 1.18 | 130 | 0.0932 |
2.1525 | 1.27 | 140 | 0.3309 |
0.1969 | 1.36 | 150 | 0.1453 |
0.1086 | 1.45 | 160 | 0.1206 |
0.0967 | 1.54 | 170 | 0.0775 |
3.2033 | 1.63 | 180 | 11.3786 |
5.7023 | 1.72 | 190 | 3.1856 |
2.4538 | 1.81 | 200 | 1.9153 |
1.5514 | 1.9 | 210 | 1.0078 |
0.7012 | 1.99 | 220 | 0.4294 |
0.4103 | 2.08 | 230 | 0.3916 |
0.3791 | 2.18 | 240 | 0.3301 |
0.3279 | 2.27 | 250 | 0.3263 |
0.3271 | 2.36 | 260 | 0.3078 |
0.2791 | 2.45 | 270 | 0.2618 |
0.275 | 2.54 | 280 | 0.2609 |
0.2546 | 2.63 | 290 | 0.2311 |
0.227 | 2.72 | 300 | 0.2231 |
0.2207 | 2.81 | 310 | 0.2140 |
0.2116 | 2.9 | 320 | 0.2114 |
0.2168 | 2.99 | 330 | 0.2116 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0