Edit model card

BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Liu-Xiang/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'During 2023, continuing investing activities generated $240 million, significantly influenced by $14.5 billion received from the maturities and sales of investments, with expenditures of $13.9 billion on investments and $456 million on property and equipment.',
    'What significant financial activity occurred in continuing investing activities in 2023?',
    'What indicates where to find information about legal proceedings in the consolidated financial statements of an Annual Report on Form 10-K?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.6871
cosine_accuracy@3 0.8171
cosine_accuracy@5 0.8543
cosine_accuracy@10 0.9043
cosine_precision@1 0.6871
cosine_precision@3 0.2724
cosine_precision@5 0.1709
cosine_precision@10 0.0904
cosine_recall@1 0.6871
cosine_recall@3 0.8171
cosine_recall@5 0.8543
cosine_recall@10 0.9043
cosine_ndcg@10 0.7941
cosine_mrr@10 0.759
cosine_map@100 0.7632

Information Retrieval

Metric Value
cosine_accuracy@1 0.6829
cosine_accuracy@3 0.8143
cosine_accuracy@5 0.8543
cosine_accuracy@10 0.9014
cosine_precision@1 0.6829
cosine_precision@3 0.2714
cosine_precision@5 0.1709
cosine_precision@10 0.0901
cosine_recall@1 0.6829
cosine_recall@3 0.8143
cosine_recall@5 0.8543
cosine_recall@10 0.9014
cosine_ndcg@10 0.7923
cosine_mrr@10 0.7574
cosine_map@100 0.7616

Information Retrieval

Metric Value
cosine_accuracy@1 0.6643
cosine_accuracy@3 0.8043
cosine_accuracy@5 0.8557
cosine_accuracy@10 0.8971
cosine_precision@1 0.6643
cosine_precision@3 0.2681
cosine_precision@5 0.1711
cosine_precision@10 0.0897
cosine_recall@1 0.6643
cosine_recall@3 0.8043
cosine_recall@5 0.8557
cosine_recall@10 0.8971
cosine_ndcg@10 0.7818
cosine_mrr@10 0.7448
cosine_map@100 0.7492

Information Retrieval

Metric Value
cosine_accuracy@1 0.6457
cosine_accuracy@3 0.7829
cosine_accuracy@5 0.83
cosine_accuracy@10 0.8857
cosine_precision@1 0.6457
cosine_precision@3 0.261
cosine_precision@5 0.166
cosine_precision@10 0.0886
cosine_recall@1 0.6457
cosine_recall@3 0.7829
cosine_recall@5 0.83
cosine_recall@10 0.8857
cosine_ndcg@10 0.7639
cosine_mrr@10 0.725
cosine_map@100 0.7296

Information Retrieval

Metric Value
cosine_accuracy@1 0.6171
cosine_accuracy@3 0.7386
cosine_accuracy@5 0.7929
cosine_accuracy@10 0.84
cosine_precision@1 0.6171
cosine_precision@3 0.2462
cosine_precision@5 0.1586
cosine_precision@10 0.084
cosine_recall@1 0.6171
cosine_recall@3 0.7386
cosine_recall@5 0.7929
cosine_recall@10 0.84
cosine_ndcg@10 0.7256
cosine_mrr@10 0.6893
cosine_map@100 0.6948

Training Details

Training Dataset

Unnamed Dataset

  • Size: 6,300 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 8 tokens
    • mean: 45.54 tokens
    • max: 288 tokens
    • min: 9 tokens
    • mean: 20.38 tokens
    • max: 46 tokens
  • Samples:
    positive anchor
    If the discount rate used to calculate the present value of these reserves changed by 25 basis points, net income would have been affected by approximately $1.1 million for fiscal 2023. By what amount would net income for fiscal 2023 be affected if the discount rate used for calculating the present value of reserves changed by 25 basis points?
    Net revenue $
    Item 8 covers Financial Statements and Supplementary Data. What is included in Item 8 of the document?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.96 3 - 0.6943 0.7200 0.7341 0.6337 0.7346
1.92 6 - 0.7178 0.7393 0.7525 0.6764 0.7513
2.88 9 - 0.7280 0.7468 0.7584 0.6926 0.7611
3.2 10 3.3659 - - - - -
3.84 12 - 0.7296 0.7492 0.7616 0.6948 0.7632
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.9.18
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
10
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Liu-Xiang/bge-base-financial-matryoshka

Finetuned
(250)
this model

Evaluation results