|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- az |
|
base_model: |
|
- sentence-transformers/LaBSE |
|
pipeline_tag: sentence-similarity |
|
--- |
|
|
|
|
|
|
|
|
|
# Small LaBSE for English-Azerbaijani |
|
|
|
This is an optimized version of [LaBSE](https://huggingface.co/sentence-transformers/LaBSE) |
|
|
|
|
|
|
|
|
|
|
|
# Benchmark |
|
|
|
| STSBenchmark | biosses-sts | sickr-sts | sts12-sts | sts13-sts | sts15-sts | sts16-sts | Average Pearson | Model | |
|
|--------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------------|--------------------------------------| |
|
| 0.7363 | 0.8148 | 0.7067 | 0.7050 | 0.6535 | 0.7514 | 0.7070 | 0.7250 | sentence-transformers/LaBSE | |
|
| 0.7400 | 0.8216 | 0.6946 | 0.7098 | 0.6781 | 0.7637 | 0.7222 | 0.7329 | LocalDoc/LaBSE-small-AZ | |
|
| 0.5830 | 0.2486 | 0.5921 | 0.5593 | 0.5559 | 0.5404 | 0.5289 | 0.5155 | antoinelouis/colbert-xm | |
|
| 0.7572 | 0.8139 | 0.7328 | 0.7646 | 0.6318 | 0.7542 | 0.7092 | 0.7377 | intfloat/multilingual-e5-large-instruct | |
|
| 0.7485 | 0.7714 | 0.7271 | 0.7170 | 0.6496 | 0.7570 | 0.7255 | 0.7280 | intfloat/multilingual-e5-large | |
|
| 0.6960 | 0.8185 | 0.6950 | 0.6752 | 0.5899 | 0.7186 | 0.6790 | 0.6960 | intfloat/multilingual-e5-base | |
|
| 0.7376 | 0.7917 | 0.7190 | 0.7441 | 0.6286 | 0.7461 | 0.7026 | 0.7242 | intfloat/multilingual-e5-small | |
|
| 0.7927 | 0.6672 | 0.7758 | 0.8122 | 0.7312 | 0.7831 | 0.7416 | 0.7577 | BAAI/bge-m3 | |
|
|
|
[STS-Benchmark](https://github.com/LocalDoc-Azerbaijan/STS-Benchmark) |
|
|
|
|
|
|
|
|
|
|
|
## How to Use |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
# Load model and tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained("LocalDoc/LaBSE-small-AZ") |
|
model = AutoModel.from_pretrained("LocalDoc/LaBSE-small-AZ") |
|
|
|
# Prepare texts |
|
texts = [ |
|
"Hello world", |
|
"Salam dünya" |
|
] |
|
|
|
# Tokenize and generate embeddings |
|
encoded = tokenizer(texts, padding=True, truncation=True, return_tensors="pt") |
|
with torch.no_grad(): |
|
embeddings = model(**encoded).pooler_output |
|
|
|
# Compute similarity |
|
similarity = torch.nn.functional.cosine_similarity(embeddings[0], embeddings[1], dim=0) |
|
``` |
|
|
|
|