Edit model card

ru_propaganda_opposition_model_distilbert-base-multilingual-cased

This model is a fine-tuned version of distilbert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0003
  • Validation Loss: 0.2582
  • Train Accuracy: 0.9551
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 7695, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
0.2994 0.2306 0.9091 0
0.1127 0.1394 0.9540 1
0.0485 0.1417 0.9485 2
0.0256 0.1394 0.9562 3
0.0158 0.1835 0.9617 4
0.0106 0.1984 0.9617 5
0.0082 0.2812 0.9376 6
0.0030 0.2452 0.9562 7
0.0033 0.2022 0.9595 8
0.0052 0.2328 0.9529 9
0.0022 0.2302 0.9573 10
0.0019 0.2552 0.9529 11
0.0019 0.2461 0.9584 12
0.0006 0.2569 0.9551 13
0.0003 0.2582 0.9551 14

Framework versions

  • Transformers 4.29.1
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.