Edit model card
Configuration Parsing Warning: In config.json: "quantization_config.bits" must be an integer

image/jpeg

Meta-Llama-3-120B-Instruct

Meta-Llama-3-120B-Instruct is a self-merge with meta-llama/Meta-Llama-3-70B-Instruct.

🧩 Configuration

slices:
- sources:
  - layer_range: [0, 20]
    model: meta-llama/Meta-Llama-3-70B-Instruct
- sources:
  - layer_range: [10, 30]
    model: meta-llama/Meta-Llama-3-70B-Instruct
- sources:
  - layer_range: [20, 40]
    model: meta-llama/Meta-Llama-3-70B-Instruct
- sources:
  - layer_range: [30, 50]
    model: meta-llama/Meta-Llama-3-70B-Instruct
- sources:
  - layer_range: [40, 60]
    model: meta-llama/Meta-Llama-3-70B-Instruct
- sources:
  - layer_range: [50, 70]
    model: meta-llama/Meta-Llama-3-70B-Instruct
- sources:
  - layer_range: [60, 80]
    model: meta-llama/Meta-Llama-3-70B-Instruct
merge_method: passthrough
dtype: float16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Llama-3-120B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for LoneStriker/Meta-Llama-3-120B-Instruct-2.65bpw-h6-exl2

Quantized
(44)
this model