Dolphin 2.9.1 Yi 1.5 34b 🐬

Curated and trained by Eric Hartford, Lucas Atkins, and Fernando Fernandes, and Cognitive Computations

This is our most spectacular outcome ever. FFT, all parameters, 16bit. 77.4 MMLU on 34b. And it talks like a dream.

Although the max positional embeddings is 4k, we used rope theta of 1000000.0 and we trained with sequence length 8k. We plan to train on the upcoming 32k version as well.

Discord: https://discord.gg/8fbBeC7ZGx

Our appreciation for the sponsors of Dolphin 2.9.1:

This model is based on Yi-1.5-34b, and is governed by apache 2.0 license.

The base model has 4k context, but we used rope theta of 1000000.0 and the full-weight fine-tuning was with 8k sequence length.

Dolphin 2.9.1 uses ChatML prompt template format.

example:

<|im_start|>system
You are Dolphin, a helpful AI assistant.<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Dolphin-2.9.1 has a variety of instruction, conversational, and coding skills. It also has initial agentic abilities and supports function calling.

Dolphin is uncensored. We have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant with any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models You are responsible for any content you create using this model. Enjoy responsibly.

Dolphin is licensed according to apache 2.0 license. We grant permission for any use, including commercial. Dolphin was trained on data generated from GPT4, among other models.

Evals

image/png

Training

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: 01-ai/Yi-1.5-34B
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true

# load_in_8bit: false
# load_in_4bit: true
# strict: false

# adapter: qlora
# lora_modules_to_save: [embed_tokens, lm_head]

# lora_r: 32
# lora_alpha: 16
# lora_dropout: 0.05
# lora_target_linear: True
# lora_fan_in_fan_out:

datasets:
  - path: /workspace/datasets/dolphin-2.9/dolphin201-sharegpt2.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/dolphin-coder-translate-sharegpt2.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/dolphin-coder-codegen-sharegpt2.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/not_samantha_norefusals.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/Orca-Math-resort-unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/agent_instruct_react_unfiltered.jsonl
    type: sharegpt  
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/toolbench_instruct_j1s1_3k_unfiltered.jsonl
    type: sharegpt  
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/toolbench_negative_unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/toolbench_react_10p_unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/toolbench_tflan_cot_30p_unfiltered.jsonl
    type: sharegpt
    conversation: chatml
  - path: /workspace/datasets/dolphin-2.9/openhermes200k_unfiltered.jsonl
    type: sharegpt 
    conversation: chatml

chat_template: chatml

dataset_prepared_path: yi34b
val_set_size: 0.01
output_dir: ./out-yi

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

wandb_project: dolphin-2.9-yi-34b
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
# resume_from_checkpoint: /workspace/axolotl/dbrx-checkpoint
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 4
save_total_limit: 2
save_steps:
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<|startoftext|>"
  eos_token: "<|im_end|>"
  pad_token: "<unk>"
  unk_token: "<unk>"
tokens:
  - "<|im_start|>"
  

out-yi

This model is a fine-tuned version of 01-ai/Yi-1.5-34B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4425

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.6265 0.0 1 0.6035
0.4674 0.25 327 0.4344
0.4337 0.5 654 0.4250
0.4346 0.75 981 0.4179
0.3985 1.0 1308 0.4118
0.3128 1.23 1635 0.4201
0.3261 1.48 1962 0.4157
0.3259 1.73 2289 0.4122
0.3126 1.98 2616 0.4079
0.2265 2.21 2943 0.4441
0.2297 2.46 3270 0.4427
0.2424 2.71 3597 0.4425

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for LoneStriker/dolphin-2.9.1-yi-1.5-34b-4.0bpw-h6-exl2

Base model

01-ai/Yi-1.5-34B
Quantized
(12)
this model

Datasets used to train LoneStriker/dolphin-2.9.1-yi-1.5-34b-4.0bpw-h6-exl2