Overview
This repository hosts a YOLOv8l model trained on the ArxivFormula (https://github.com/microsoft/ArxivFormula) dataset, which focuses on the detection of mathematical expressions in scientific papers.
Training Data:
- Source: ArxivFormula (https://github.com/microsoft/ArxivFormula)
- Classes: 6 classes (InlineFormula, DisplayedFormulaLine, FormulaNumber, DisplayedFormulaBlock, Table, Figure) Pages: ~600,000 images of document pages
Model:
- YOLOv8l (https://github.com/ultralytics/ultralytics)
- epochs = 100
- imgsz = 640
- optimizer = 'AdamW'
- lr0 = 0.0001
- augment = True
Usage
Example Code
from ultralytics import YOLO
import pathlib
# Sample images
img_list = ['sample1.png', 'sample2.png', 'sample3.png']
# Load the document segmentation model
model = YOLO('arxivFormula_YOLOv8l.pt')
# Process the images
results = model(source=img_list, save=True, show_labels=True, show_conf=True, show_boxes=True)
Model tree for LouiseBloch/ArxivFormulaYOLOv8
Base model
Ultralytics/YOLOv8