detraaa_finetuned_cppe5
This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.8720
- Map: 0.0239
- Map 50: 0.0667
- Map 75: 0.0105
- Map Small: 0.0079
- Map Medium: 0.0505
- Map Large: 0.0493
- Mar 1: 0.067
- Mar 10: 0.1645
- Mar 100: 0.2185
- Mar Small: 0.1159
- Mar Medium: 0.2718
- Mar Large: 0.2179
- Map Bone-fracture: -1.0
- Mar 100 Bone-fracture: -1.0
- Map Angle: 0.0372
- Mar 100 Angle: 0.1583
- Map Fracture: 0.0068
- Mar 100 Fracture: 0.2237
- Map Line: 0.0042
- Mar 100 Line: 0.1829
- Map Messed Up Angle: 0.0473
- Mar 100 Messed Up Angle: 0.3091
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Bone-fracture | Mar 100 Bone-fracture | Map Angle | Mar 100 Angle | Map Fracture | Mar 100 Fracture | Map Line | Mar 100 Line | Map Messed Up Angle | Mar 100 Messed Up Angle |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 41 | 3.8122 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
No log | 2.0 | 82 | 2.9585 | 0.0001 | 0.0005 | 0.0 | 0.0 | 0.0002 | 0.0 | 0.0 | 0.003 | 0.0051 | 0.0 | 0.0127 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0 | 0.0085 | 0.0 | 0.0029 | 0.0002 | 0.0091 |
No log | 3.0 | 123 | 2.7378 | 0.0001 | 0.0005 | 0.0 | 0.0001 | 0.0002 | 0.0 | 0.0 | 0.0045 | 0.0096 | 0.0111 | 0.0117 | 0.0 | 0.0 | 0.0 | 0.0002 | 0.0356 | 0.0 | 0.0029 | 0.0 | 0.0 | ||
No log | 4.0 | 164 | 2.5667 | 0.0001 | 0.0004 | 0.0 | 0.0001 | 0.0001 | 0.0 | 0.0 | 0.005 | 0.0224 | 0.0152 | 0.0362 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0001 | 0.0458 | 0.0002 | 0.0257 | 0.0 | 0.0182 |
No log | 5.0 | 205 | 2.3972 | 0.0004 | 0.0019 | 0.0 | 0.0002 | 0.001 | 0.0 | 0.0007 | 0.0171 | 0.0465 | 0.0242 | 0.0815 | 0.0 | 0.0 | 0.0 | 0.0004 | 0.0898 | 0.0005 | 0.06 | 0.0005 | 0.0364 | ||
No log | 6.0 | 246 | 2.4845 | 0.0001 | 0.0004 | 0.0 | 0.0002 | 0.0001 | 0.0 | 0.0 | 0.0051 | 0.0234 | 0.0305 | 0.0283 | 0.0 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0001 | 0.0593 | 0.0001 | 0.0343 | 0.0 | 0.0 |
No log | 7.0 | 287 | 2.2863 | 0.0001 | 0.0005 | 0.0 | 0.0002 | 0.0001 | 0.0003 | 0.0 | 0.0043 | 0.0262 | 0.0354 | 0.025 | 0.025 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0003 | 0.0847 | 0.0001 | 0.02 | 0.0 | 0.0 |
No log | 8.0 | 328 | 2.2480 | 0.0002 | 0.0011 | 0.0 | 0.0005 | 0.0003 | 0.0 | 0.003 | 0.0077 | 0.0338 | 0.0339 | 0.0408 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0864 | 0.0004 | 0.0486 | 0.0 | 0.0 | ||
No log | 9.0 | 369 | 2.1551 | 0.0008 | 0.0037 | 0.0001 | 0.0024 | 0.0006 | 0.0 | 0.0024 | 0.0273 | 0.0544 | 0.0425 | 0.084 | 0.0 | 0.0 | 0.0 | 0.0028 | 0.1424 | 0.0004 | 0.0571 | 0.0001 | 0.0182 | ||
No log | 10.0 | 410 | 2.1461 | 0.0005 | 0.0019 | 0.0 | 0.0014 | 0.0005 | 0.0 | 0.0078 | 0.0208 | 0.0513 | 0.0485 | 0.065 | 0.0 | 0.0 | 0.0 | 0.0014 | 0.1424 | 0.0005 | 0.0629 | 0.0 | 0.0 | ||
No log | 11.0 | 451 | 2.1594 | 0.0013 | 0.0053 | 0.0 | 0.0032 | 0.0012 | 0.0009 | 0.0114 | 0.0346 | 0.0684 | 0.0577 | 0.0975 | 0.0625 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0042 | 0.1475 | 0.0002 | 0.0714 | 0.0006 | 0.0545 |
No log | 12.0 | 492 | 2.0050 | 0.0014 | 0.0066 | 0.0 | 0.0037 | 0.0007 | 0.0028 | 0.0045 | 0.0435 | 0.0702 | 0.078 | 0.0742 | 0.0875 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0048 | 0.1661 | 0.0007 | 0.1057 | 0.0001 | 0.0091 |
4.8365 | 13.0 | 533 | 2.0575 | 0.0022 | 0.0087 | 0.0002 | 0.002 | 0.0086 | 0.0064 | 0.0083 | 0.054 | 0.1006 | 0.0781 | 0.1375 | 0.1232 | -1.0 | -1.0 | 0.0 | 0.0 | 0.0023 | 0.161 | 0.0012 | 0.1143 | 0.0051 | 0.1273 |
4.8365 | 14.0 | 574 | 1.9988 | 0.0071 | 0.0222 | 0.0032 | 0.0025 | 0.0151 | 0.0061 | 0.014 | 0.0919 | 0.1275 | 0.0879 | 0.1797 | 0.0679 | -1.0 | -1.0 | 0.004 | 0.0333 | 0.0023 | 0.1864 | 0.0016 | 0.1629 | 0.0205 | 0.1273 |
4.8365 | 15.0 | 615 | 1.9491 | 0.0039 | 0.0146 | 0.0008 | 0.0034 | 0.0095 | 0.0033 | 0.0171 | 0.0772 | 0.1198 | 0.0751 | 0.1762 | 0.0929 | 0.0048 | 0.0417 | 0.0038 | 0.1949 | 0.0008 | 0.0971 | 0.006 | 0.1455 | ||
4.8365 | 16.0 | 656 | 1.9354 | 0.0048 | 0.0245 | 0.0005 | 0.0052 | 0.0106 | 0.0087 | 0.013 | 0.1011 | 0.1515 | 0.102 | 0.1874 | 0.0679 | -1.0 | -1.0 | 0.0087 | 0.0833 | 0.0051 | 0.1966 | 0.0011 | 0.1171 | 0.0042 | 0.2091 |
4.8365 | 17.0 | 697 | 1.9822 | 0.0042 | 0.0174 | 0.0013 | 0.0039 | 0.0075 | 0.0195 | 0.0231 | 0.0862 | 0.1299 | 0.1128 | 0.1565 | 0.0786 | -1.0 | -1.0 | 0.0018 | 0.0083 | 0.0048 | 0.1932 | 0.002 | 0.1543 | 0.0084 | 0.1636 |
4.8365 | 18.0 | 738 | 1.9518 | 0.0135 | 0.0331 | 0.0024 | 0.0027 | 0.0299 | 0.0263 | 0.0362 | 0.1359 | 0.1954 | 0.0739 | 0.2899 | 0.1839 | -1.0 | -1.0 | 0.0198 | 0.15 | 0.0037 | 0.1932 | 0.0021 | 0.12 | 0.0283 | 0.3182 |
4.8365 | 19.0 | 779 | 1.9752 | 0.008 | 0.042 | 0.0019 | 0.0034 | 0.0202 | 0.0085 | 0.0251 | 0.1405 | 0.173 | 0.1069 | 0.2424 | 0.0732 | -1.0 | -1.0 | 0.0098 | 0.15 | 0.0033 | 0.1424 | 0.0022 | 0.1543 | 0.0166 | 0.2455 |
4.8365 | 20.0 | 820 | 1.9388 | 0.0155 | 0.0519 | 0.0013 | 0.0047 | 0.034 | 0.0288 | 0.0459 | 0.164 | 0.2209 | 0.135 | 0.2656 | 0.1857 | -1.0 | -1.0 | 0.0176 | 0.1 | 0.0044 | 0.1763 | 0.0034 | 0.18 | 0.0367 | 0.4273 |
4.8365 | 21.0 | 861 | 1.9225 | 0.0265 | 0.0666 | 0.0035 | 0.0045 | 0.0545 | 0.0311 | 0.0765 | 0.163 | 0.2146 | 0.1159 | 0.2651 | 0.1625 | -1.0 | -1.0 | 0.0395 | 0.15 | 0.0048 | 0.2 | 0.0028 | 0.1629 | 0.0588 | 0.3455 |
4.8365 | 22.0 | 902 | 1.9158 | 0.0151 | 0.0549 | 0.0072 | 0.006 | 0.0398 | 0.0326 | 0.0542 | 0.1634 | 0.1978 | 0.1108 | 0.2455 | 0.1143 | -1.0 | -1.0 | 0.0272 | 0.15 | 0.0044 | 0.1932 | 0.0033 | 0.1571 | 0.0256 | 0.2909 |
4.8365 | 23.0 | 943 | 1.8807 | 0.0203 | 0.0553 | 0.0033 | 0.0078 | 0.0464 | 0.0478 | 0.055 | 0.1664 | 0.2098 | 0.1313 | 0.2568 | 0.1768 | -1.0 | -1.0 | 0.0263 | 0.15 | 0.0069 | 0.2 | 0.0034 | 0.18 | 0.0447 | 0.3091 |
4.8365 | 24.0 | 984 | 1.8769 | 0.0265 | 0.0645 | 0.0091 | 0.0075 | 0.0546 | 0.0487 | 0.0709 | 0.1737 | 0.221 | 0.1134 | 0.275 | 0.2125 | -1.0 | -1.0 | 0.0379 | 0.1667 | 0.0065 | 0.2068 | 0.0043 | 0.1743 | 0.0574 | 0.3364 |
1.6844 | 25.0 | 1025 | 1.8751 | 0.0261 | 0.0661 | 0.0091 | 0.0078 | 0.0532 | 0.0568 | 0.0707 | 0.173 | 0.2203 | 0.1155 | 0.2708 | 0.2429 | -1.0 | -1.0 | 0.0371 | 0.175 | 0.0066 | 0.2169 | 0.0041 | 0.18 | 0.0565 | 0.3091 |
1.6844 | 26.0 | 1066 | 1.8840 | 0.0223 | 0.062 | 0.0068 | 0.0078 | 0.0453 | 0.0272 | 0.0578 | 0.1576 | 0.2145 | 0.1277 | 0.2713 | 0.1768 | -1.0 | -1.0 | 0.0332 | 0.1417 | 0.007 | 0.2237 | 0.0037 | 0.1743 | 0.0454 | 0.3182 |
1.6844 | 27.0 | 1107 | 1.8819 | 0.0273 | 0.0703 | 0.0115 | 0.0077 | 0.056 | 0.0447 | 0.0707 | 0.1692 | 0.2239 | 0.1149 | 0.2657 | 0.2321 | -1.0 | -1.0 | 0.0419 | 0.1583 | 0.0068 | 0.2203 | 0.0039 | 0.1714 | 0.0565 | 0.3455 |
1.6844 | 28.0 | 1148 | 1.8702 | 0.024 | 0.0669 | 0.0105 | 0.0079 | 0.0483 | 0.0487 | 0.067 | 0.1658 | 0.2173 | 0.1169 | 0.2666 | 0.2179 | -1.0 | -1.0 | 0.0381 | 0.1667 | 0.0069 | 0.2254 | 0.0041 | 0.1771 | 0.047 | 0.3 |
1.6844 | 29.0 | 1189 | 1.8712 | 0.024 | 0.0667 | 0.0105 | 0.0079 | 0.0485 | 0.0493 | 0.067 | 0.1666 | 0.2206 | 0.1159 | 0.2754 | 0.2179 | -1.0 | -1.0 | 0.0378 | 0.1667 | 0.0068 | 0.2237 | 0.0041 | 0.1829 | 0.0473 | 0.3091 |
1.6844 | 30.0 | 1230 | 1.8720 | 0.0239 | 0.0667 | 0.0105 | 0.0079 | 0.0505 | 0.0493 | 0.067 | 0.1645 | 0.2185 | 0.1159 | 0.2718 | 0.2179 | -1.0 | -1.0 | 0.0372 | 0.1583 | 0.0068 | 0.2237 | 0.0042 | 0.1829 | 0.0473 | 0.3091 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cpu
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for LovrOP/detraaa_finetuned_cppe5
Base model
microsoft/conditional-detr-resnet-50