Text Generation
Transformers
Safetensors
mixtral
Mixture of Experts
frankenmoe
Merge
mergekit
lazymergekit
Locutusque/TinyMistral-248M-v2
Locutusque/TinyMistral-248M-v2.5
Locutusque/TinyMistral-248M-v2.5-Instruct
jtatman/tinymistral-v2-pycoder-instruct-248m
Felladrin/TinyMistral-248M-SFT-v4
Locutusque/TinyMistral-248M-v2-Instruct
text-generation-inference
Inference Endpoints
metadata
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- Locutusque/TinyMistral-248M-v2
- Locutusque/TinyMistral-248M-v2.5
- Locutusque/TinyMistral-248M-v2.5-Instruct
- jtatman/tinymistral-v2-pycoder-instruct-248m
- Felladrin/TinyMistral-248M-SFT-v4
- Locutusque/TinyMistral-248M-v2-Instruct
base_model:
- Locutusque/TinyMistral-248M-v2
- Locutusque/TinyMistral-248M-v2.5
- Locutusque/TinyMistral-248M-v2.5-Instruct
- jtatman/tinymistral-v2-pycoder-instruct-248m
- Felladrin/TinyMistral-248M-SFT-v4
- Locutusque/TinyMistral-248M-v2-Instruct
inference:
parameters:
do_sample: true
temperature: 0.2
top_p: 0.14
top_k: 12
max_new_tokens: 250
repetition_penalty: 1.15
widget:
- text: |
<|im_start|>user
Write me a Python program that calculates the factorial of n. <|im_end|>
<|im_start|>assistant
- text: >-
An emerging clinical approach to treat substance abuse disorders involves
a form of cognitive-behavioral therapy whereby addicts learn to reduce
their reactivity to drug-paired stimuli through cue-exposure or extinction
training. It is, however,
datasets:
- nampdn-ai/mini-peS2o
TinyMistral-6x248M
TinyMistral-6x248M is a Mixure of Experts (MoE) made with the following models using LazyMergekit:
- Locutusque/TinyMistral-248M-v2
- Locutusque/TinyMistral-248M-v2.5
- Locutusque/TinyMistral-248M-v2.5-Instruct
- jtatman/tinymistral-v2-pycoder-instruct-248m
- Felladrin/TinyMistral-248M-SFT-v4
- Locutusque/TinyMistral-248M-v2-Instruct
The resulting model is then pre-trained on 600,000 examples of nampdn-ai/mini-peS2o.
We don't recommend using the Inference API as the model has serious performance degradation.
Recommended inference parameters
do_sample: true
temperature: 0.2
top_p: 0.14
top_k: 12
repetition_penalty: 1.15
🧩 Configuration
base_model: Locutusque/TinyMistral-248M-v2.5
experts:
- source_model: Locutusque/TinyMistral-248M-v2
positive_prompts:
- "An emerging trend in global economics is"
- "TITLE: The Next Generation of Internet Connectivity"
- "begin a comprehensive analysis on the sociopolitical effects of"
negative_prompts:
- "Code a simple"
- "Explain the Krebs cycle in detail"
- "Compose a sonnet about"
- source_model: Locutusque/TinyMistral-248M-v2.5
positive_prompts:
- "Advanced C++ memory management techniques"
- "C# asynchronous programming best practices"
- "AI's role in predictive analytics"
- "textbook review on machine learning algorithms"
- "## Exercise: Design a C# interface for a CRM system"
- "## Solution: Optimize an AI-powered recommendation engine"
negative_prompts:
- "Narrate the story of"
- "The ethical considerations in"
- "Review the latest art exhibition by"
- source_model: Locutusque/TinyMistral-248M-v2.5-Instruct
positive_prompts:
- "What is the chemical formula for photosynthesis?"
- "Identification of a new mineral found on Mars"
- "physics: Explaining the concept of relativity"
- "Solve for x using differential equations:"
- "history: Analyze the causes of the French Revolution"
negative_prompts:
- "Devise a business plan for"
- "The evolution of culinary arts"
- "Orchestrate a piece for a string quartet"
- source_model: jtatman/tinymistral-v2-pycoder-instruct-248m
positive_prompts:
- "Write a Python program for facial recognition"
- "Explain dynamic typing in programming languages"
- "algorithm development for efficient data sorting"
negative_prompts:
- "Who was the first Emperor of Rome?"
- "Discuss the political dynamics in"
- "Provide a proof for Fermat's Last Theorem"
- "physics: The principles of thermodynamics"
- source_model: Felladrin/TinyMistral-248M-SFT-v4
positive_prompts:
- "Escreba sobre a influência da música no Brasil"
- "Voici un guide pour les voyageurs en France"
- "Para entender la política de México, se debe considerar"
- "Cuales son los efectos de la globalización en Argentina"
- "Welche gesellschaftlichen Veränderungen gibt es in Deutschland"
- "If you had to imagine a utopian city, what would be its core values?"
negative_prompts:
- "Calculate the integral of"
- "Describe the process of cell division"
- "Review the latest advancements in quantum computing"
- source_model: Locutusque/TinyMistral-248M-v2-Instruct
positive_prompts:
- "Write an essay on the evolution of international trade laws"
- "What are the key components of a sustainable urban ecosystem?"
- "instruct on effective negotiation techniques in diplomacy"
- "How does cognitive bias affect decision making in high-pressure environments?"
- "Identify the architectural significance of the Sydney Opera House"
negative_prompts:
- "Develop a script to automate"
- "Understanding inheritance in object-oriented programming"
- "philosophy of existentialism in contemporary society"
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "M4-ai/TinyMistral-6x248M"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])