Edit model card

Model Card for Model ID

base_model : meta-llama/Meta-Llama-3.1-8B-Instruct

Basic usage

# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

tokenizer = AutoTokenizer.from_pretrained("MDDDDR/Meta-Llama-3.1-8B-it-v0.1")
model = AutoModelForCausalLM.from_pretrained(
    "MDDDDR/Meta-Llama-3.1-8B-it-v0.1",
    device_map="auto",
    torch_dtype=torch.bfloat16
)

input_text = "사과가 뭐야?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")

outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))

Training dataset

lora_config and bnb_config in Training

bnd_config = BitsAndBytesConfig(
  load_in_4bit = True,
  bnb_4bit_use_double_quant = True,
  bnb_4bit_quant_type = 'nf4',
  bnb_4bit_compute_dtype = torch.bfloat16
)

lora_config = LoraConfig(
  r = 8,
  lora_alpha = 8,
  lora_dropout = 0.05,
  target_modules = ['gate_proj', 'up_proj', 'down_proj']
)

Model evaluation

Tasks Version Filter n-shot Metric Value Stderr
kobest_boolq 1 none 0 acc 0.5150 ± 0.0133
none 0 f1 0.3634 ± N/A
kobest_copa 1 none 0 acc 0.6280 ± 0.0153
none 0 f1 0.6279 ± N/A
kobest_hellaswag 1 none 0 acc 0.4280 ± 0.0221
none 0 acc_norm 0.5540 ± 0.0223
none 0 f1 0.4250 ± N/A
kobest_sentineg 1 none 0 acc 0.7406 ± 0.0220
none 0 f1 0.7317 ± N/A

Hardware

  • RTX 3090 Ti 24GB x 1
  • Training Time : 1 hours
Downloads last month
8
Safetensors
Model size
8.03B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train MDDDDR/Meta-Llama-3.1-8B-it-v0.1