MF21377197's picture
End of training
121c3c3 verified
|
raw
history blame
23 kB
metadata
license: other
base_model: nvidia/mit-b1
tags:
  - generated_from_trainer
model-index:
  - name: segformer-b0-finetuned
    results: []

segformer-b0-finetuned

This model is a fine-tuned version of nvidia/mit-b1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8773
  • Mean Iou: 0.0964
  • Mean Accuracy: 0.1815
  • Overall Accuracy: 0.6354
  • Per Category Iou: [0.8709973734658337, nan, nan, 0.0, nan, nan, nan, nan, 0.15161288348439136, 0.0, 0.0, nan, 0.0, 0.0, 0.006957040846784377, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.22656990441116737, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.22896159518731865, 0.0, 0.20480095108477073, 0.0, 0.0, nan, 0.01860223923628908, nan, 0.0, 0.0, nan, nan, 0.3478849385568743, 0.8001752473766323, nan, 0.0, nan, nan, nan, 0.0, 0.5213144145067103, 0.00020164913926503273, nan, nan, 0.3642463325249845, nan, 0.0, 0.11512223447630505, nan, nan, 0.0, nan, nan, nan, 0.0021824331272781287, nan, 0.0, nan, 0.35073249986231203, 0.0, nan, 0.1010882373946579, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.02502361805571557, nan, nan, nan, nan, 0.0, nan, nan]
  • Per Category Accuracy: [0.9742580262216608, nan, nan, 0.0, nan, nan, nan, nan, 0.24609607819763976, 0.0, 0.0, nan, 0.0, 0.0, 0.006957040846784377, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.3616494013572118, nan, nan, nan, nan, nan, nan, nan, nan, 0.37126401890244404, 0.0, 0.6771064920697395, 0.0, 0.0, nan, 0.02150779081584229, nan, 0.0, 0.0, nan, nan, 0.6814244292575043, 0.970753714122741, nan, 0.0, nan, nan, nan, 0.0, 0.6360289981876133, 0.00033384135278322085, nan, nan, 0.4988866464599826, nan, 0.0, 0.785438428980633, nan, nan, 0.0, nan, nan, nan, 0.002212825117302902, nan, 0.0, nan, 0.5717877204698119, 0.0, nan, 0.7865863188788358, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.3926720501386043, nan, nan, nan, nan, 0.0, nan, nan]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
3.4529 1.0 80 3.2954 0.0194 0.0648 0.5477 [0.8500480777686724, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0023609758700262776, nan, 0.0, nan, 0.0, nan, 0.0, 0.0, nan, 0.0020040797337436927, 0.0, 0.061335048095556885, 0.0023114869626497535, 0.0, 0.0, 0.0028841600136464535, nan, 0.0, 0.0, 0.0, nan, 0.22441085504152225, 0.00022038424641551506, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 4.9971890811418574e-05, 0.0006399154198749382, nan, nan, 7.446626305952089e-06, nan, 0.0, 0.0036773444818859326, nan, nan, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.0, nan, 0.05987484315518598, 0.0, nan, 0.027129730519641078, 0.0, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, 0.005170356622033674, nan, 0.0, nan, nan, 0.0, 0.0, nan] [0.918769181021595, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.002550175054389327, nan, nan, nan, nan, nan, nan, nan, nan, 0.002067454815446841, 0.0, 0.07406895231206187, 0.007655681075529829, 0.0, nan, 0.002974654095184301, nan, 0.0, 0.0, nan, nan, 0.8530991430022566, 0.00022038424641551506, nan, 0.0, nan, nan, nan, 0.0, 4.999687519530029e-05, 0.0006676827055664417, nan, nan, 7.447180869681782e-06, nan, 0.0, 0.0037479870601815563, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, 0.12639240399777776, 0.0, nan, 0.8479238664189084, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.00940098830902736, nan, nan, nan, nan, 0.0, nan, nan]
2.9976 2.0 160 2.7537 0.0484 0.0996 0.5742 [0.86150909322172, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 3.378013187763485e-05, nan, 0.0, nan, nan, nan, nan, 0.065793561053194, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.001485440263504186, 0.0, 0.07084658168133046, 0.0, 0.0, nan, 0.08034025173051057, nan, 0.0, 0.0, 0.0, nan, 0.2083447468877669, 0.8302131841902043, nan, 0.0, nan, 0.0, nan, 0.0, 0.009454302033435629, 0.0016759507929857338, nan, nan, 7.320322679823727e-06, nan, 0.0, 0.05253339838425002, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, 0.1567190068529707, 0.0, nan, 0.06848624979009778, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.01377878988786717, nan, nan, nan, nan, 0.0, 0.0, 0.0] [0.9338207229228758, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 3.378013187763485e-05, nan, 0.0, nan, nan, nan, nan, 0.07628913510164681, nan, nan, nan, nan, nan, nan, nan, nan, 0.0015095701827072172, 0.0, 0.09617102981692853, 0.0, 0.0, nan, 0.13605859489841035, nan, 0.0, 0.0, nan, nan, 0.8674681599300516, 0.9198449532007571, nan, 0.0, nan, nan, nan, 0.0, 0.013592900443722267, 0.0017708106538936062, nan, nan, 7.447180869681782e-06, nan, 0.0, 0.15651764974134613, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, 0.3295585272644628, 0.0, nan, 0.7366062900508831, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.11522236953115583, nan, nan, nan, nan, 0.0, nan, nan]
2.4258 3.0 240 2.4463 0.0482 0.1236 0.5877 [0.868393700664814, nan, nan, 0.0, nan, 0.0, nan, nan, 5.784470624530012e-05, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.13772495602363446, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0321382424098885, 0.00025861400136203375, 0.18367848166089243, 0.0, 0.0, nan, 0.029990153534659374, nan, 0.0, 0.0, nan, nan, 0.29257954577999257, 0.43549371844546203, nan, 0.0, nan, nan, nan, 0.0, 0.04761825597375537, 0.001289435994449625, nan, nan, 0.0035611510791366905, nan, 0.0, 0.07598198725480347, nan, nan, 0.0, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.05348024616227849, 0.0, nan, 0.06683699335210364, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.03726523398140042, nan, nan, nan, nan, 0.0, nan, nan] [0.9471222100080544, nan, nan, 0.0, nan, nan, nan, nan, 5.960185957801883e-05, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.17597648652153242, nan, nan, nan, nan, nan, nan, nan, nan, 0.04397443575712329, 0.00026051616937024555, 0.5608624889635878, 0.0, 0.0, nan, 0.03758018255348011, nan, 0.0, 0.0, nan, nan, 0.7487472917456909, 0.9616790686821022, nan, 0.0, nan, nan, nan, 0.0, 0.05370289356915193, 0.0020973945859641486, nan, nan, 0.003686354530492482, nan, 0.0, 0.7437260406720725, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, 0.07446730901969147, 0.0, nan, 0.810482260389351, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.2719055080149452, nan, nan, nan, nan, 0.0, nan, nan]
2.087 4.0 320 2.2565 0.0555 0.1480 0.5947 [0.8742114109794139, nan, nan, 0.0, nan, 0.0, nan, nan, 0.0779080051311879, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.005624490146408484, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.17876297133463476, nan, nan, nan, nan, nan, nan, nan, nan, 0.050276548834512824, 0.0, 0.1905194476109426, 0.0, 0.0, nan, 0.013199289791075099, nan, 0.0, 0.0, nan, nan, 0.3573728195081561, 0.252501074286942, nan, 0.0, nan, nan, nan, 0.0, 0.15476617406653595, 0.013559702209927048, nan, nan, 0.04121606860014201, nan, 0.0, 0.06859761541055806, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, 0.02018972324467806, 0.0, nan, 0.07724640986223517, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.1228047876284292, nan, nan, nan, nan, 0.0, nan, nan] [0.9488838924821839, nan, nan, 0.0, nan, nan, nan, nan, 0.0971311638256447, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0061702227874334695, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.2506807670696039, nan, nan, nan, nan, nan, nan, nan, nan, 0.07043703697626529, 0.0, 0.7418117799738317, 0.0, 0.0, nan, 0.013956567735304399, nan, 0.0, 0.0, nan, nan, 0.6504220697813466, 0.9750447250382431, nan, 0.0, nan, nan, nan, 0.0, 0.4153490406849572, 0.018426591189491255, nan, nan, 0.044958630910268915, nan, 0.0, 0.7391515013324593, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, 0.023731895240714035, 0.0, nan, 0.8176545160898182, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.698686272146559, nan, nan, nan, nan, 0.0, nan, nan]
2.4856 5.0 400 2.1588 0.0652 0.1577 0.6024 [0.874319428979826, nan, nan, 0.0, nan, 0.0, nan, nan, 0.09039934673562235, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.19544683942843302, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.07050120296288812, 0.0, 0.18984777753037013, 0.0, 0.0, nan, 0.0342475472512626, nan, 0.0, 0.0, nan, nan, 0.29901325816259955, 0.4907418190287644, nan, 0.0, nan, nan, nan, 0.0, 0.19211257075723592, 0.0017249876786594382, nan, nan, 0.23202875667685693, nan, 0.0, 0.09536114518053058, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, 0.05802955580080011, 0.0, nan, 0.0899768214425729, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.08718462471329519, nan, nan, nan, nan, 0.0, nan, nan] [0.9469548086456621, nan, nan, 0.0, nan, nan, nan, nan, 0.11546866928914849, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.2674225942628265, nan, nan, nan, nan, nan, nan, nan, nan, 0.09159563209149307, 0.0, 0.655280989713532, 0.0, 0.0, nan, 0.039668227684885746, nan, 0.0, 0.0, nan, nan, 0.7631150228554162, 0.9833285799476263, nan, 0.0, nan, nan, nan, 0.0, 0.224829698143866, 0.002946512809347558, nan, nan, 0.25718094415359066, nan, 0.0, 0.8088526599307406, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, 0.07553914443964332, 0.0, nan, 0.9087404268620947, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.7971555984090635, nan, nan, nan, nan, 0.0, nan, nan]
2.1323 6.0 480 2.0670 0.0769 0.1710 0.6147 [0.8757795828026143, nan, nan, 0.0, nan, nan, nan, nan, 0.19039825422804146, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.175650195400967, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.15843399129267735, 0.0, 0.1756139673446844, 0.0, 0.0, nan, 0.01511876783615914, nan, 0.0, 0.0, nan, nan, 0.3486561717854553, 0.5223481719549358, nan, 0.0, nan, nan, nan, 0.0, 0.28805323975539615, 0.002640870067299592, nan, nan, 0.29734045890344546, nan, 0.0, 0.08728417423150946, nan, nan, 0.0, nan, nan, nan, 0.0028869414395910355, nan, 0.0, nan, 0.15451079055271658, 0.0, nan, 0.0973423363168802, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.06828414207103552, nan, nan, nan, nan, 0.0, nan, nan] [0.9676324759381305, nan, nan, 0.0, nan, nan, nan, nan, 0.3085488933921405, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.24024954255334477, nan, nan, nan, nan, nan, nan, nan, nan, 0.21839542534601153, 0.0, 0.7643925452359931, 0.0, 0.0, nan, 0.01667889708622793, nan, 0.0, 0.0, nan, nan, 0.5749689796390709, 0.9755243848686769, nan, 0.0, nan, nan, nan, 0.0, 0.5201862383601025, 0.004049640757674723, nan, nan, 0.3882438802791203, nan, 0.0, 0.8124153852731185, nan, nan, 0.0, nan, nan, nan, 0.00293112437003997, nan, 0.0, nan, 0.19919864870173234, 0.0, nan, 0.8719934702950524, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.6580691816319152, nan, nan, nan, nan, 0.0, nan, nan]
2.0121 7.0 560 1.9379 0.0842 0.1622 0.6265 [0.859861275288934, nan, nan, 0.0, nan, nan, nan, nan, 0.1186398578461656, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.19353571758617502, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.13665111017684795, 0.0, 0.19581940960421299, 0.0, 0.0, nan, 0.014568098720292504, nan, 0.0, 0.0, nan, nan, 0.31100732085148597, 0.7551066263583626, nan, 0.0, nan, nan, nan, 0.0, 0.4180386542591267, 0.00034594285902553936, nan, nan, 0.21805583741628737, nan, 0.0, 0.10467347049236524, nan, nan, 0.0, nan, nan, nan, 0.0016509860683915326, nan, 0.0, nan, 0.31682973015622534, 0.0, nan, 0.1081023213352972, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.03671800770115517, nan, nan, nan, nan, 0.0, nan, nan] [0.9771138159463548, nan, nan, 0.0, nan, nan, nan, nan, 0.18504390670322246, 0.0, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.2413877562781852, nan, nan, nan, nan, nan, nan, nan, nan, 0.18533255667041323, 0.0, 0.5850096269426744, 0.0, 0.0, nan, 0.01652842820203573, nan, 0.0, 0.0, nan, nan, 0.7401091659541091, 0.9584640514402759, nan, 0.0, nan, nan, nan, 0.0, 0.6168114492844198, 0.000457217504898759, nan, nan, 0.28006613096612276, nan, 0.0, 0.7441108150090493, nan, nan, 0.0, nan, nan, nan, 0.001691478885477611, nan, 0.0, nan, 0.450675929719022, 0.0, nan, 0.7978917388812671, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.3539833674822225, nan, nan, nan, nan, 0.0, nan, nan]
1.593 8.0 640 1.9328 0.0907 0.1938 0.6343 [0.8805056752440464, nan, nan, 0.0, nan, nan, nan, nan, 0.18597613201621652, 0.0, 0.0, nan, 0.0, 0.0, 0.005946777489495557, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.22852746854918998, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.22283251753042135, 0.0, 0.20503549372939087, 0.0, 0.0, nan, 0.018604236431727664, nan, 0.0, 0.0, nan, nan, 0.3784220531613792, 0.6527428846749492, nan, 0.0, nan, nan, nan, 0.0, 0.39822343113003317, 0.004842897421854398, nan, nan, 0.31742902613070484, nan, 0.0, 0.10676698565680903, nan, nan, 0.0, nan, nan, nan, 0.004460131193680913, nan, 0.0, nan, 0.32315435567372797, 0.0, nan, 0.10615047732873284, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.04232788062620814, nan, nan, nan, nan, 0.0, nan, nan] [0.9677245743723464, nan, nan, 0.0, nan, nan, nan, nan, 0.32353876107601226, 0.0, 0.0, nan, 0.0, 0.0, 0.005946777489495557, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.3637961588888729, nan, nan, nan, nan, nan, nan, nan, nan, 0.3669527192773753, 0.0, 0.7229514823364217, 0.0, 0.0, nan, 0.02173465159508592, nan, 0.0, 0.0, nan, nan, 0.655513909336968, 0.98352303663564, nan, 0.0, nan, nan, nan, 0.0, 0.7575901506155865, 0.006930836780608172, nan, nan, 0.46047408753416397, nan, 0.0, 0.803237804791153, nan, nan, 0.0, nan, nan, nan, 0.004553090424607542, nan, 0.0, nan, 0.5415350254490766, 0.0, nan, 0.8730007120156991, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.6677112209232252, nan, nan, nan, nan, 0.0, nan, nan]
2.3307 9.0 720 1.8721 0.0930 0.1723 0.6332 [0.865893462436438, nan, nan, 0.0, nan, nan, nan, nan, 0.14574011231568515, 0.0, 0.0, nan, 0.0, 0.0, 0.0032833559111886666, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.19291887108617475, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.165778267211031, 0.0, 0.20340515087149372, 0.0, 0.0, nan, 0.018662598525298755, nan, 0.0, 0.0, nan, nan, 0.3202236345411969, 0.8210262690453337, nan, 0.0, nan, nan, nan, 0.0, 0.4803647090876636, 0.0006024454529240404, nan, nan, 0.32135363710630094, nan, 0.0, 0.11670122296016232, nan, nan, 0.0, nan, nan, nan, 0.0038173493490355876, nan, 0.0, nan, 0.3916001579288756, 0.0, nan, 0.10556749875257064, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.02620625418417146, nan, nan, nan, nan, 0.0, nan, nan] [0.9762437718203154, nan, nan, 0.0, nan, nan, nan, nan, 0.24103985377677117, 0.0, 0.0, nan, 0.0, 0.0, 0.0032833559111886666, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.2952584033310761, nan, nan, nan, nan, nan, nan, nan, nan, 0.23219076372765385, 0.0, 0.5541555416086036, 0.0, 0.0, nan, 0.021239261730206977, nan, 0.0, 0.0, nan, nan, 0.7550272271976238, 0.9647255567943167, nan, 0.0, nan, nan, nan, 0.0, 0.6390913067933254, 0.0011031279483271646, nan, nan, 0.4071969555924605, nan, 0.0, 0.7499821863732881, nan, nan, 0.0, nan, nan, nan, 0.003950645890053873, nan, 0.0, nan, 0.6233817249255046, 0.0, nan, 0.786273726620704, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.3255393515728577, nan, nan, nan, nan, 0.0, nan, nan]
1.8931 10.0 800 1.8773 0.0964 0.1815 0.6354 [0.8709973734658337, nan, nan, 0.0, nan, nan, nan, nan, 0.15161288348439136, 0.0, 0.0, nan, 0.0, 0.0, 0.006957040846784377, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.22656990441116737, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.22896159518731865, 0.0, 0.20480095108477073, 0.0, 0.0, nan, 0.01860223923628908, nan, 0.0, 0.0, nan, nan, 0.3478849385568743, 0.8001752473766323, nan, 0.0, nan, nan, nan, 0.0, 0.5213144145067103, 0.00020164913926503273, nan, nan, 0.3642463325249845, nan, 0.0, 0.11512223447630505, nan, nan, 0.0, nan, nan, nan, 0.0021824331272781287, nan, 0.0, nan, 0.35073249986231203, 0.0, nan, 0.1010882373946579, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.02502361805571557, nan, nan, nan, nan, 0.0, nan, nan] [0.9742580262216608, nan, nan, 0.0, nan, nan, nan, nan, 0.24609607819763976, 0.0, 0.0, nan, 0.0, 0.0, 0.006957040846784377, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, 0.3616494013572118, nan, nan, nan, nan, nan, nan, nan, nan, 0.37126401890244404, 0.0, 0.6771064920697395, 0.0, 0.0, nan, 0.02150779081584229, nan, 0.0, 0.0, nan, nan, 0.6814244292575043, 0.970753714122741, nan, 0.0, nan, nan, nan, 0.0, 0.6360289981876133, 0.00033384135278322085, nan, nan, 0.4988866464599826, nan, 0.0, 0.785438428980633, nan, nan, 0.0, nan, nan, nan, 0.002212825117302902, nan, 0.0, nan, 0.5717877204698119, 0.0, nan, 0.7865863188788358, 0.0, 0.0, nan, 0.0, nan, 0.0, 0.0, 0.0, 0.3926720501386043, nan, nan, nan, nan, 0.0, nan, nan]

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2