ppo-LunarLander-v2 / config.json
MFawad's picture
Upload PPO LunarLander-v2 trained agent
58f004b
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cba19a01750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cba19a017e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cba19a01870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cba19a01900>", "_build": "<function ActorCriticPolicy._build at 0x7cba19a01990>", "forward": "<function ActorCriticPolicy.forward at 0x7cba19a01a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cba19a01ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cba19a01b40>", "_predict": "<function ActorCriticPolicy._predict at 0x7cba19a01bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cba19a01c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cba19a01cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cba19a01d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cba199a2180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 4505600, "_total_timesteps": 4500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702463413160688265, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAgAAAAAAAEZvdD7Duig/vR/SvaM+8r4N6Is+4WAmvgAAAAAAAAAAMxsAvAt7oj2KmHA+eWu+vuAWHT6Lkgg+AAAAAAAAAAAlDJ2+GnGRP1Jsyr4Rywq/8iYXvywMGbwAAAAAAAAAAGb/L71OQaw/wmY/vh8Sz76JKgC+T4EovgAAAAAAAAAAsx6gvf6tDD+sMYQ9oxflvtpMU706K6Q7AAAAAAAAAAAztKq8KDOVvPULO777STg9qWkCPu5gDr4AAIA/AACAPwD+NbxPLkm81ZLiO1DwBjv0fra9o8wUPAAAgD8AAIA/mumWOnj52z5wkvO9HYDOvs8i17zqg8W8AAAAAAAAAAAzFJY8aXgfvLbPkjtzZHk89qqKvQiKUD0AAIA/AACAPzNVFL3DGUm6GUQwMwLOFTBM8Iu6xT/RswAAgD8AAIA/5kcfPQTBpT+gl1U+108Dv3tKOD16QY49AAAAAAAAAAAm2a29pE5lu4luPbyZV4w8pDepPOLrcL0AAIA/AACAP2a5Ib1dmnQ+4r+xPi+M575/qys+eXeJPQAAAAAAAAAAM1VJPEh5vLp6KYa8djB6PDbq8TpTm1q9AACAPwAAgD9muDs9TFaAPsXkg77SX6m+7iz1vSqOd70AAAAAAAAAAIAX7z3ofPY+A1DrvVkn6L7f0eA9nFaxvQAAAAAAAAAAAMTaPOSYuz9VmzY+qjocOgvsVjyoX4Q9AAAAAAAAAABmBvo9paaUPpKQtr4iasq+t/qKvJACz70AAAAAAAAAAM0V8bz+FJI91hhNvvFMmL4zJWK+W9BkPQAAAAAAAAAAmkIQvVwXCrpeqSY41bhvMyFVDjteCUa3AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxRLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksUhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0012444444444443814, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHN2OSbH6uaMAWyUS9WMAXSUR0CtB9AKfFrEdX2UKGgGR0Bwyerp7kXDaAdL7GgIR0CtB9xJEpiJdX2UKGgGR0BwfGzOX3QEaAdLz2gIR0CtCA2DpTuOdX2UKGgGR0Bw+6FM7EHdaAdL8GgIR0CtCCjqnm7rdX2UKGgGR0BzMbXJ5mh/aAdL32gIR0CtCDkWAPNFdX2UKGgGR0BzWv9qDbrUaAdL8WgIR0CtCHCuEEkjdX2UKGgGR0BxN/m3fAKwaAdL+mgIR0CtCHkyLyc1dX2UKGgGR0BwFf9aUzKtaAdLz2gIR0CtCKKMefZmdX2UKGgGR0BzlKGKyfL+aAdL32gIR0CtCM2HtWuHdX2UKGgGR0ByOwpG4I8haAdL62gIR0CtCUEWqLjxdX2UKGgGR0Bx6u1YyO7yaAdLxWgIR0CtCT/echC/dX2UKGgGR0BxI9xyXD3uaAdL4WgIR0CtCVaXBxgidX2UKGgGR0BxCwIiTt9haAdL3mgIR0CtFKyxzJZGdX2UKGgGR0BydkKF7D2raAdL4WgIR0CtFOfMOf/WdX2UKGgGR0BxF6UB4lhPaAdL5GgIR0CtFO2pqASWdX2UKGgGR0BwP4GC7K7qaAdL02gIR0CtFPZftx+8dX2UKGgGR0BxhcNRWLgoaAdLyWgIR0CtFUqJEYwZdX2UKGgGR0BwyZrJr+HaaAdL3mgIR0CtFU6FuejEdX2UKGgGR0BxMPDm8ujAaAdL22gIR0CtFVfwI+nqdX2UKGgGR0By4mxrzoU0aAdL5GgIR0CtFblxOtW/dX2UKGgGR0ByQI+fRNRFaAdL32gIR0CtFcIzeoDQdX2UKGgGR0BxJDX+VC5VaAdLymgIR0CtFdrilzltdX2UKGgGR0BwJeSdOIqLaAdLxmgIR0CtFeJkGzKLdX2UKGgGR0ByTDymQ8wIaAdLxGgIR0CtFjntv4ucdX2UKGgGR0Bzqf/Ot4iYaAdL+mgIR0CtFoL127nQdX2UKGgGR0BxOIYQ8OkMaAdL42gIR0CtFrUMPSUkdX2UKGgGR0Bv+5EKE385aAdL0mgIR0CtFvnfuTibdX2UKGgGR0Bwu0r5IpYtaAdL5WgIR0CtFwoBaLXMdX2UKGgGR0ByGuhL5AQhaAdLumgIR0CtFyxFRYRvdX2UKGgGR0ByF2PGQ0XQaAdL0GgIR0CtF4v0yxiYdX2UKGgGR0By8VOHnEEUaAdL3GgIR0CtF+C2DxsmdX2UKGgGR0Bxln9wWFewaAdL0WgIR0CtGFY0l7dBdX2UKGgGR0BuS5geA/cGaAdL0GgIR0CtGI62nbZfdX2UKGgGR0BxwbeTFERbaAdLwWgIR0CtGLT5ftx/dX2UKGgGR0By284Ia99MaAdL12gIR0CtGL7Vz6rOdX2UKGgGR0Bw8O4uscQzaAdL8GgIR0CtGSyTQmeEdX2UKGgGR0Bw0suh9LHuaAdLx2gIR0CtGVjxTbWVdX2UKGgGR0BxlrluFYdRaAdL0mgIR0CtGXx9gF5fdX2UKGgGR0BykOimEXchaAdL62gIR0CtGXzVDrqudX2UKGgGR0Bvqq6reZXuaAdL2WgIR0CtGZE6Lfk4dX2UKGgGR0BvNHwEyLydaAdL2mgIR0CtGa9nbqQjdX2UKGgGR0BwJiJ0nw5OaAdL12gIR0CtGh1Jtix3dX2UKGgGR0Bxk/3dsSCfaAdL7GgIR0CtGisfigkDdX2UKGgGR0ByectBfKISaAdLwGgIR0CtGim6XjU/dX2UKGgGR0Bw0uS7oSteaAdL32gIR0CtGlp5E+gUdX2UKGgGR0BzNKTdLxqgaAdL2GgIR0CtGoExIre7dX2UKGgGR0BwJfL9uP3jaAdL0WgIR0CtGoXHaN+9dX2UKGgGR0BvQwRkEs8QaAdL0WgIR0CtGsZQpF1CdX2UKGgGR0BvAEq8UVSGaAdLzWgIR0CtGvhRqGlAdX2UKGgGR0Bx1w4XGff5aAdLzmgIR0CtG1GTs6aLdX2UKGgGR0BwbohMajveaAdL1mgIR0CtG5xPoFFEdX2UKGgGR0Bw5guOCGvfaAdL0mgIR0CtG7GViWmhdX2UKGgGR0Byu2kHlfZ3aAdL1GgIR0CtHAQvg3tKdX2UKGgGR0ByvErupjtpaAdL8mgIR0CtHBXiBGx2dX2UKGgGR0ByxmVJL/S6aAdL1GgIR0CtHCZ0KZ2IdX2UKGgGR0BwhEBaLXMAaAdLyWgIR0CtHCX+l0o0dX2UKGgGR0BxzVQ40dilaAdLzWgIR0CtHB+jVQQ+dX2UKGgGR0BybeoESuhcaAdL3GgIR0CtHFFCLMs6dX2UKGgGR0BzrZcW0qpcaAdL6mgIR0CtHK35vcagdX2UKGgGR0BwNK9qUNayaAdL2mgIR0CtHO7QswtbdX2UKGgGR0BwwQNwzch1aAdL4GgIR0CtHRyRKYiQdX2UKGgGR0By8X0QK8cuaAdL0GgIR0CtHRrWAf+1dX2UKGgGR0ByHtBJI1+BaAdL82gIR0CtHVwhW5pbdX2UKGgGR0By90dQwblzaAdL3GgIR0CtHXBgNPP+dX2UKGgGR0BxTLLhaTwEaAdL5mgIR0CtHZHH/95ydX2UKGgGR0Bx5HdN34bkaAdL12gIR0CtHaoaUA1fdX2UKGgGR0ByFRtP557gaAdL32gIR0CtHfOZkTYedX2UKGgGR0BwcA2GZeAvaAdLv2gIR0CtHjw5eZ5SdX2UKGgGR0By9aBwuM/AaAdL32gIR0CtHk9Xko4NdX2UKGgGR0Byqw8W9DhMaAdLwWgIR0CtHppqh11XdX2UKGgGR0BxkiSDAaegaAdL5WgIR0CtHquRcNYsdX2UKGgGR0Bw8oFhXr+paAdLx2gIR0CtHtInBtUGdX2UKGgGR0BxS8uGsV+JaAdLzGgIR0CtHtQ9A5aNdX2UKGgGR0BxeeyIHkcTaAdLyWgIR0CtHwckD6nBdX2UKGgGR0BxUacoYvWZaAdL3mgIR0CtHxh/7SApdX2UKGgGR0BxbtF9a2WqaAdL52gIR0CtHz8awUxmdX2UKGgGR0BxZJQj2SMcaAdL2WgIR0CtH6aeGwiadX2UKGgGR0BuSOHzpX6qaAdLy2gIR0CtH9nT7VJ+dX2UKGgGR0BzHB8eCCjDaAdN0gJoCEdArR/riS7oS3V9lChoBkdAcFALYPGyX2gHS9RoCEdArR/1PJq7AnV9lChoBkdAcUA42CNCJGgHS85oCEdArSAgv6CUYHV9lChoBkdAc9ZhH9WIXWgHS/FoCEdArSA2BMBZIXV9lChoBkdAcdqnXNC7b2gHS9toCEdArSBdWn0kGHV9lChoBkdAcWv32VVxTGgHS9NoCEdArSBhIxxku3V9lChoBkdAZydsP8Q7LmgHTegDaAhHQK0ge98JD3N1fZQoaAZHQHEv8u3+dbxoB0vlaAhHQK0grl/6O5t1fZQoaAZHQHGelzdUKiRoB0vPaAhHQK0g8j2SMcZ1fZQoaAZHQHKCL/XGwRpoB0voaAhHQK0g/93KSxJ1fZQoaAZHQHIA02xY7q9oB0vBaAhHQK0hGkE9t/F1fZQoaAZHQHAZ0QTVUddoB0veaAhHQK0hM6DoQnR1fZQoaAZHQHEQ6zmfXf9oB0vAaAhHQK0hSiB5HEx1fZQoaAZHQHIxxO+IuXhoB0vjaAhHQK0hmSNfgJl1fZQoaAZHQHF6foePq9poB0vFaAhHQK0hn4593KV1fZQoaAZHQHDXrIYFaB9oB0vSaAhHQK0huB/Zuht1fZQoaAZHQHGw7TYukDZoB0vlaAhHQK0hw1KoQ4F1fZQoaAZHQHMZtZV4oqloB0vNaAhHQK0h28DB/I91fZQoaAZHQHMCIFiay8loB0vOaAhHQK0iM6oVEeB1fZQoaAZHQHCR9NSIgvFoB0vXaAhHQK0ilNhVlwt1fZQoaAZHQHM1daY/mkpoB0veaAhHQK0imtuk1uR1fZQoaAZHQHB7AqmTC+FoB0vMaAhHQK0iprs0HhV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 880, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 20, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}