Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +25 -25
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 284.44 +/- 17.09
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a91a50455a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a91a5045630>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a91a50456c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a91a5045750>", "_build": "<function ActorCriticPolicy._build at 0x7a91a50457e0>", "forward": "<function ActorCriticPolicy.forward at 0x7a91a5045870>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a91a5045900>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a91a5045990>", "_predict": "<function ActorCriticPolicy._predict at 0x7a91a5045a20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a91a5045ab0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a91a5045b40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a91a5045bd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a91a5048800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1512000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702395982267112737, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3sQz3u5Ys9GwNgvEmBmr4YSUE9VZoevQAAAAAAAAAAZgH7PSFYfz4+4DO+gknEvjicZTutG1K9AAAAAAAAAADzSpA9yuOCPpi7Cr4PeK6+LHUOPdqBFr0AAAAAAAAAAM3SZj2fe867GrgIu4lX7jtd/jS9+vTXPAAAgD8AAIA/MwNIO8pABj5ZOJM9VtKOvkFDSz2Oh448AAAAAAAAAACzmQw9XunkPS5D8rzmX4i+rXCHPc4H47sAAAAAAAAAALM8hT0fZK88ii1tPBr1dL4eaNg9G/ZnvQAAAAAAAAAA81riPdj0nz8WNcc+o0PEvg+dNz6uipM9AAAAAAAAAACaY2480/OCP0DH9z1pU8G+p2S2uwRynz0AAAAAAAAAAGZiiz1Ims89CGhWPOT1mL7K6RU9NtqjvAAAAAAAAAAAmr8NPNRYmT64ojA+a5eOvkFrEj7aQyS8AAAAAAAAAACNFro9bCTKu4op9rzuwrg8/Ck5vV08mz0AAIA/AAAAALOnMD25IoY+yJmsPXtupb5s+648wSA5PAAAAAAAAAAAQGS8Pcubhz9QcZQ934/Gvuahbz2tOhY9AAAAAAAAAADNCFk8rvedur4TPbbNsJ2v4MzkupOKZDUAAIA/AACAP81UqDyuMZG61GGFuKKDZbOkLnU6SpWaNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.008000000000000007, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHECGWIGhVWMAWyUS/SMAXSUR0CtDdGfoRqXdX2UKGgGR0Byhz9Q40djaAdNBgFoCEdArQ37BsQ/YHV9lChoBkdAchr5d4Vym2gHS+5oCEdArQ4wsf7rLXV9lChoBkdAcdu3kgfU4WgHS/1oCEdArQ6UcdYGMXV9lChoBkdAbciksz2vjmgHTSwBaAhHQK0OqO6unuR1fZQoaAZHQG/ij/MnqmloB00IAWgIR0CtDzKl54W2dX2UKGgGR0ByfCVnmJWOaAdNBgFoCEdArQ90slLOA3V9lChoBkdAcd//0ulGgGgHTR4BaAhHQK0PnsgMc6x1fZQoaAZHQHDe9vOyE+RoB0vXaAhHQK0P2H+Idlx1fZQoaAZHQHDR5G4I8hdoB00rAWgIR0CtD+sbvPTodX2UKGgGR0BvrtCu2Zy/aAdL+2gIR0CtEB3+uNgjdX2UKGgGR0BwgE+u/1xsaAdNGQFoCEdArRBFMuez2XV9lChoBkdAcIRrkbPyCmgHTQMBaAhHQK0Qoo4MnZ11fZQoaAZHQHGEVYlpoK5oB0vxaAhHQK0iPsWweNl1fZQoaAZHQHH/hEBsANpoB0voaAhHQK0iX84Pwux1fZQoaAZHQHH1Fo6CDmNoB00fAWgIR0CtIoNPYWcjdX2UKGgGR0BuMRzo2XLNaAdL9GgIR0CtIrr3bmEHdX2UKGgGR0BxXvn1WbPQaAdNDAFoCEdArSNM+5e7c3V9lChoBkdAcRGOcUdq+WgHS/NoCEdArSNzjzZpSXV9lChoBkdAcMG3VCojwGgHTTABaAhHQK0kTAgPmPp1fZQoaAZHQG8EyQ5myxBoB0v7aAhHQK0kc2kSElF1fZQoaAZHQHG3YToMa0hoB00OAWgIR0CtJHgGB4D+dX2UKGgGR0BwvbPomoitaAdL6mgIR0CtJJwWnCO4dX2UKGgGR0BxMMlOXVslaAdL4mgIR0CtJWGWt2cKdX2UKGgGR0BzYpNbkfcOaAdNHAFoCEdArSV8A93bEnV9lChoBkdAbfcOS4e9z2gHTQYBaAhHQK0liMF2V3V1fZQoaAZHQHCTcbvPTodoB000AWgIR0CtJg62v0ROdX2UKGgGR0BzdKGFi8WcaAdL/2gIR0CtJhaWw/xEdX2UKGgGR0Bv/juOS4e+aAdL4mgIR0CtJi3BHkLhdX2UKGgGR0Bykfp3X7LuaAdL/2gIR0CtJjlf7aZhdX2UKGgGR0BytBTUAks0aAdL/WgIR0CtJlHctXgcdX2UKGgGR0BBvc5Ke05VaAdLzmgIR0CtJnPn0TURdX2UKGgGR0Bw2XlEJBw/aAdNdAFoCEdArSZ6LS/j83V9lChoBkdAcQcMcZLqU2gHS/JoCEdArScM5yU9p3V9lChoBkdAMCu3c580DWgHS9hoCEdArSeWaH9FWnV9lChoBkdAcxqmBvrGBGgHS+xoCEdArSfcihWYGHV9lChoBkdAcGvE74i5eGgHS/VoCEdArSfb4SHuZ3V9lChoBkdAb08oa1kUbmgHS+5oCEdArSgGWKMvRXV9lChoBkdAczmMEA5q/WgHTQ4BaAhHQK0pg+B6KLt1fZQoaAZHQHKoQSWZ7XxoB00TAWgIR0CtKY0+LWI5dX2UKGgGR0BxQwfbKzRhaAdNJgFoCEdArSnIs3AEdXV9lChoBkdAcQu0IC2c8WgHS+ZoCEdArSnvcnE2pHV9lChoBkdAcL6upS75EmgHTRYBaAhHQK0qecz67/Z1fZQoaAZHQHFwK6reZXxoB00dAWgIR0CtKoxnOB1+dX2UKGgGR0BxPmw9q1w6aAdNIwFoCEdArSqMsYl6aHV9lChoBkdAcmGn9ehPCWgHTSwBaAhHQK0qq+1SflJ1fZQoaAZHQHJxefVZs9BoB00cAWgIR0CtKrYXoC+2dX2UKGgGR0BwH/t4RmK7aAdL7mgIR0CtKt2xyGSIdX2UKGgGR0Bu5HRXwLE2aAdNHQFoCEdArSrla+vhZXV9lChoBkdAc0JUNKAavWgHS/VoCEdArSvEw35vcnV9lChoBkdAXv3+0gKWs2gHTegDaAhHQK0r2s6q8151fZQoaAZHQG61lfZ26kJoB0v0aAhHQK0r6SYgJTl1fZQoaAZHQHIqN/BnBcloB00eAWgIR0CtLAo371qWdX2UKGgGR0Bx+/bBXS0CaAdNEAFoCEdArSwVKXfIjnV9lChoBkdAUmAeMhouf2gHS7BoCEdArSzRJd0JW3V9lChoBkdAcNmuwosqa2gHTQUBaAhHQK0tNDye7MB1fZQoaAZHQHITzkELYwtoB00HAWgIR0CtLUHc1wYMdX2UKGgGR0BxjeTnq3VkaAdL6GgIR0CtLbQyhzvJdX2UKGgGR0BtEEZ1mrbQaAdL9WgIR0CtLe/pdKNAdX2UKGgGR0Bvw1ZV4oqkaAdNAgFoCEdArS38bHZK4HV9lChoBkdAchuNVzZHu2gHTQcBaAhHQK0uAQVbiZR1fZQoaAZHQHGobZOBUaRoB00lAWgIR0CtLf/JV81GdX2UKGgGR0Bw4BENOM2naAdNMwFoCEdArS4RpnHvMXV9lChoBkdAcXOZAY51eWgHS/xoCEdArS4ubLEDQ3V9lChoBkdAcZ0PZqVQh2gHS/9oCEdArS4xI8QqZ3V9lChoBkdATILHU+cH4WgHS9loCEdArS6GoJiRXHV9lChoBkdAcYsJCjUNKGgHS+BoCEdArS6LfLs8gnV9lChoBkdAbgejyFwkxGgHS/VoCEdArS8RUR3/xXV9lChoBkdAcgS384xUN2gHTQ0BaAhHQK0vTTkyULV1fZQoaAZHQHB8EL2HtWxoB00gAWgIR0CtL2JO32EkdX2UKGgGR0BsKZ5Z8rqdaAdL/WgIR0CtMEWtlqagdX2UKGgGR0BwEjZdv864aAdNCQFoCEdArTCBGx2SuHV9lChoBkdAcIYr4nF5wGgHS/RoCEdArTCplrdnCnV9lChoBkdAccqtwJgLJGgHTTgBaAhHQK0wvzgdfb91fZQoaAZHQHOOFjI7vG9oB0vxaAhHQK0w2dtl7MR1fZQoaAZHQHBHOkk8ifRoB0v6aAhHQK0xGcR15jZ1fZQoaAZHQHO/ylN1yNpoB0v5aAhHQK0xOAQxveh1fZQoaAZHQHNhMxKxs2xoB0v8aAhHQK0xRSMLncN1fZQoaAZHQHB/liKBNEhoB00OAWgIR0CtMUe0Xxe+dX2UKGgGR0Bx0q+10DEFaAdNGwFoCEdArTFw8W9DhXV9lChoBkdAcbjwaBI4EWgHS/5oCEdArTGrItDlYHV9lChoBkdAclJgeA/cFmgHTQcBaAhHQK0yYJWvKU51fZQoaAZHQHHj5jUd7v5oB01BAWgIR0CtMoJpvgm7dX2UKGgGR0BzAKw1R+BpaAdNIgFoCEdArTL2USqU/3V9lChoBkdAcweXQMQVbmgHTSEBaAhHQK0zCraufVZ1fZQoaAZHQHD5f3FkxypoB0vzaAhHQK0ze+eOGTN1fZQoaAZHQHF3EtmL9/BoB00EAWgIR0CtNB/3WWhRdX2UKGgGR0BzoDs1KoQ4aAdL12gIR0CtNKmpuMuOdX2UKGgGR0Bx4zIV/MGHaAdNGgFoCEdArTTdvn8sMHV9lChoBkdAc4Nhqj8DS2gHTfwBaAhHQK006VBUrCp1fZQoaAZHQGzd8wQDmr9oB0v1aAhHQK01C/UONHZ1fZQoaAZHQHLXqPfbblBoB00KAWgIR0CtNTKdQO4HdX2UKGgGR0BsdR/CqIacaAdNCAFoCEdArTVWNT987nV9lChoBkdAcRanHvMKTmgHTREBaAhHQK01lea8Yht1fZQoaAZHQG11nKwIMSdoB00zAWgIR0CtNaJ+2E00dX2UKGgGR0BwNnQE6kqMaAdNPAFoCEdArTWobXHzYnV9lChoBkdAcCYFdszl92gHS/1oCEdArTXQt6HCXXV9lChoBkdAbp8TFl05l2gHS/JoCEdArTaq8SPEKnV9lChoBkdAcNvQm/nGKmgHTQ0BaAhHQK029GViWmh1fZQoaAZHQHDuCTt9hJBoB00BAWgIR0CtN4yquKXOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 378, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1500, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 70, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cba19a01750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cba19a017e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cba19a01870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cba19a01900>", "_build": "<function ActorCriticPolicy._build at 0x7cba19a01990>", "forward": "<function ActorCriticPolicy.forward at 0x7cba19a01a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cba19a01ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cba19a01b40>", "_predict": "<function ActorCriticPolicy._predict at 0x7cba19a01bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cba19a01c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cba19a01cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cba19a01d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cba199a2180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 4505600, "_total_timesteps": 4500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702463413160688265, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAgAAAAAAAEZvdD7Duig/vR/SvaM+8r4N6Is+4WAmvgAAAAAAAAAAMxsAvAt7oj2KmHA+eWu+vuAWHT6Lkgg+AAAAAAAAAAAlDJ2+GnGRP1Jsyr4Rywq/8iYXvywMGbwAAAAAAAAAAGb/L71OQaw/wmY/vh8Sz76JKgC+T4EovgAAAAAAAAAAsx6gvf6tDD+sMYQ9oxflvtpMU706K6Q7AAAAAAAAAAAztKq8KDOVvPULO777STg9qWkCPu5gDr4AAIA/AACAPwD+NbxPLkm81ZLiO1DwBjv0fra9o8wUPAAAgD8AAIA/mumWOnj52z5wkvO9HYDOvs8i17zqg8W8AAAAAAAAAAAzFJY8aXgfvLbPkjtzZHk89qqKvQiKUD0AAIA/AACAPzNVFL3DGUm6GUQwMwLOFTBM8Iu6xT/RswAAgD8AAIA/5kcfPQTBpT+gl1U+108Dv3tKOD16QY49AAAAAAAAAAAm2a29pE5lu4luPbyZV4w8pDepPOLrcL0AAIA/AACAP2a5Ib1dmnQ+4r+xPi+M575/qys+eXeJPQAAAAAAAAAAM1VJPEh5vLp6KYa8djB6PDbq8TpTm1q9AACAPwAAgD9muDs9TFaAPsXkg77SX6m+7iz1vSqOd70AAAAAAAAAAIAX7z3ofPY+A1DrvVkn6L7f0eA9nFaxvQAAAAAAAAAAAMTaPOSYuz9VmzY+qjocOgvsVjyoX4Q9AAAAAAAAAABmBvo9paaUPpKQtr4iasq+t/qKvJACz70AAAAAAAAAAM0V8bz+FJI91hhNvvFMmL4zJWK+W9BkPQAAAAAAAAAAmkIQvVwXCrpeqSY41bhvMyFVDjteCUa3AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxRLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksUhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0012444444444443814, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHN2OSbH6uaMAWyUS9WMAXSUR0CtB9AKfFrEdX2UKGgGR0Bwyerp7kXDaAdL7GgIR0CtB9xJEpiJdX2UKGgGR0BwfGzOX3QEaAdLz2gIR0CtCA2DpTuOdX2UKGgGR0Bw+6FM7EHdaAdL8GgIR0CtCCjqnm7rdX2UKGgGR0BzMbXJ5mh/aAdL32gIR0CtCDkWAPNFdX2UKGgGR0BzWv9qDbrUaAdL8WgIR0CtCHCuEEkjdX2UKGgGR0BxN/m3fAKwaAdL+mgIR0CtCHkyLyc1dX2UKGgGR0BwFf9aUzKtaAdLz2gIR0CtCKKMefZmdX2UKGgGR0BzlKGKyfL+aAdL32gIR0CtCM2HtWuHdX2UKGgGR0ByOwpG4I8haAdL62gIR0CtCUEWqLjxdX2UKGgGR0Bx6u1YyO7yaAdLxWgIR0CtCT/echC/dX2UKGgGR0BxI9xyXD3uaAdL4WgIR0CtCVaXBxgidX2UKGgGR0BxCwIiTt9haAdL3mgIR0CtFKyxzJZGdX2UKGgGR0BydkKF7D2raAdL4WgIR0CtFOfMOf/WdX2UKGgGR0BxF6UB4lhPaAdL5GgIR0CtFO2pqASWdX2UKGgGR0BwP4GC7K7qaAdL02gIR0CtFPZftx+8dX2UKGgGR0BxhcNRWLgoaAdLyWgIR0CtFUqJEYwZdX2UKGgGR0BwyZrJr+HaaAdL3mgIR0CtFU6FuejEdX2UKGgGR0BxMPDm8ujAaAdL22gIR0CtFVfwI+nqdX2UKGgGR0By4mxrzoU0aAdL5GgIR0CtFblxOtW/dX2UKGgGR0ByQI+fRNRFaAdL32gIR0CtFcIzeoDQdX2UKGgGR0BxJDX+VC5VaAdLymgIR0CtFdrilzltdX2UKGgGR0BwJeSdOIqLaAdLxmgIR0CtFeJkGzKLdX2UKGgGR0ByTDymQ8wIaAdLxGgIR0CtFjntv4ucdX2UKGgGR0Bzqf/Ot4iYaAdL+mgIR0CtFoL127nQdX2UKGgGR0BxOIYQ8OkMaAdL42gIR0CtFrUMPSUkdX2UKGgGR0Bv+5EKE385aAdL0mgIR0CtFvnfuTibdX2UKGgGR0Bwu0r5IpYtaAdL5WgIR0CtFwoBaLXMdX2UKGgGR0ByGuhL5AQhaAdLumgIR0CtFyxFRYRvdX2UKGgGR0ByF2PGQ0XQaAdL0GgIR0CtF4v0yxiYdX2UKGgGR0By8VOHnEEUaAdL3GgIR0CtF+C2DxsmdX2UKGgGR0Bxln9wWFewaAdL0WgIR0CtGFY0l7dBdX2UKGgGR0BuS5geA/cGaAdL0GgIR0CtGI62nbZfdX2UKGgGR0BxwbeTFERbaAdLwWgIR0CtGLT5ftx/dX2UKGgGR0By284Ia99MaAdL12gIR0CtGL7Vz6rOdX2UKGgGR0Bw8O4uscQzaAdL8GgIR0CtGSyTQmeEdX2UKGgGR0Bw0suh9LHuaAdLx2gIR0CtGVjxTbWVdX2UKGgGR0BxlrluFYdRaAdL0mgIR0CtGXx9gF5fdX2UKGgGR0BykOimEXchaAdL62gIR0CtGXzVDrqudX2UKGgGR0Bvqq6reZXuaAdL2WgIR0CtGZE6Lfk4dX2UKGgGR0BvNHwEyLydaAdL2mgIR0CtGa9nbqQjdX2UKGgGR0BwJiJ0nw5OaAdL12gIR0CtGh1Jtix3dX2UKGgGR0Bxk/3dsSCfaAdL7GgIR0CtGisfigkDdX2UKGgGR0ByectBfKISaAdLwGgIR0CtGim6XjU/dX2UKGgGR0Bw0uS7oSteaAdL32gIR0CtGlp5E+gUdX2UKGgGR0BzNKTdLxqgaAdL2GgIR0CtGoExIre7dX2UKGgGR0BwJfL9uP3jaAdL0WgIR0CtGoXHaN+9dX2UKGgGR0BvQwRkEs8QaAdL0WgIR0CtGsZQpF1CdX2UKGgGR0BvAEq8UVSGaAdLzWgIR0CtGvhRqGlAdX2UKGgGR0Bx1w4XGff5aAdLzmgIR0CtG1GTs6aLdX2UKGgGR0BwbohMajveaAdL1mgIR0CtG5xPoFFEdX2UKGgGR0Bw5guOCGvfaAdL0mgIR0CtG7GViWmhdX2UKGgGR0Byu2kHlfZ3aAdL1GgIR0CtHAQvg3tKdX2UKGgGR0ByvErupjtpaAdL8mgIR0CtHBXiBGx2dX2UKGgGR0ByxmVJL/S6aAdL1GgIR0CtHCZ0KZ2IdX2UKGgGR0BwhEBaLXMAaAdLyWgIR0CtHCX+l0o0dX2UKGgGR0BxzVQ40dilaAdLzWgIR0CtHB+jVQQ+dX2UKGgGR0BybeoESuhcaAdL3GgIR0CtHFFCLMs6dX2UKGgGR0BzrZcW0qpcaAdL6mgIR0CtHK35vcagdX2UKGgGR0BwNK9qUNayaAdL2mgIR0CtHO7QswtbdX2UKGgGR0BwwQNwzch1aAdL4GgIR0CtHRyRKYiQdX2UKGgGR0By8X0QK8cuaAdL0GgIR0CtHRrWAf+1dX2UKGgGR0ByHtBJI1+BaAdL82gIR0CtHVwhW5pbdX2UKGgGR0By90dQwblzaAdL3GgIR0CtHXBgNPP+dX2UKGgGR0BxTLLhaTwEaAdL5mgIR0CtHZHH/95ydX2UKGgGR0Bx5HdN34bkaAdL12gIR0CtHaoaUA1fdX2UKGgGR0ByFRtP557gaAdL32gIR0CtHfOZkTYedX2UKGgGR0BwcA2GZeAvaAdLv2gIR0CtHjw5eZ5SdX2UKGgGR0By9aBwuM/AaAdL32gIR0CtHk9Xko4NdX2UKGgGR0Byqw8W9DhMaAdLwWgIR0CtHppqh11XdX2UKGgGR0BxkiSDAaegaAdL5WgIR0CtHquRcNYsdX2UKGgGR0Bw8oFhXr+paAdLx2gIR0CtHtInBtUGdX2UKGgGR0BxS8uGsV+JaAdLzGgIR0CtHtQ9A5aNdX2UKGgGR0BxeeyIHkcTaAdLyWgIR0CtHwckD6nBdX2UKGgGR0BxUacoYvWZaAdL3mgIR0CtHxh/7SApdX2UKGgGR0BxbtF9a2WqaAdL52gIR0CtHz8awUxmdX2UKGgGR0BxZJQj2SMcaAdL2WgIR0CtH6aeGwiadX2UKGgGR0BuSOHzpX6qaAdLy2gIR0CtH9nT7VJ+dX2UKGgGR0BzHB8eCCjDaAdN0gJoCEdArR/riS7oS3V9lChoBkdAcFALYPGyX2gHS9RoCEdArR/1PJq7AnV9lChoBkdAcUA42CNCJGgHS85oCEdArSAgv6CUYHV9lChoBkdAc9ZhH9WIXWgHS/FoCEdArSA2BMBZIXV9lChoBkdAcdqnXNC7b2gHS9toCEdArSBdWn0kGHV9lChoBkdAcWv32VVxTGgHS9NoCEdArSBhIxxku3V9lChoBkdAZydsP8Q7LmgHTegDaAhHQK0ge98JD3N1fZQoaAZHQHEv8u3+dbxoB0vlaAhHQK0grl/6O5t1fZQoaAZHQHGelzdUKiRoB0vPaAhHQK0g8j2SMcZ1fZQoaAZHQHKCL/XGwRpoB0voaAhHQK0g/93KSxJ1fZQoaAZHQHIA02xY7q9oB0vBaAhHQK0hGkE9t/F1fZQoaAZHQHAZ0QTVUddoB0veaAhHQK0hM6DoQnR1fZQoaAZHQHEQ6zmfXf9oB0vAaAhHQK0hSiB5HEx1fZQoaAZHQHIxxO+IuXhoB0vjaAhHQK0hmSNfgJl1fZQoaAZHQHF6foePq9poB0vFaAhHQK0hn4593KV1fZQoaAZHQHDXrIYFaB9oB0vSaAhHQK0huB/Zuht1fZQoaAZHQHGw7TYukDZoB0vlaAhHQK0hw1KoQ4F1fZQoaAZHQHMZtZV4oqloB0vNaAhHQK0h28DB/I91fZQoaAZHQHMCIFiay8loB0vOaAhHQK0iM6oVEeB1fZQoaAZHQHCR9NSIgvFoB0vXaAhHQK0ilNhVlwt1fZQoaAZHQHM1daY/mkpoB0veaAhHQK0imtuk1uR1fZQoaAZHQHB7AqmTC+FoB0vMaAhHQK0iprs0HhV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 880, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 20, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be893fa47635f5a9ecbcf83a7352316a81875483f7be6e8c28b749584bf74d71
|
3 |
+
size 148099
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,54 +4,54 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -76,15 +76,15 @@
|
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
-
"n_envs":
|
80 |
-
"n_steps":
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7cba19a01750>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cba19a017e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cba19a01870>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cba19a01900>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7cba19a01990>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7cba19a01a20>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7cba19a01ab0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cba19a01b40>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7cba19a01bd0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cba19a01c60>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cba19a01cf0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7cba19a01d80>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7cba199a2180>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 4505600,
|
25 |
+
"_total_timesteps": 4500000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1702463413160688265,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWV9QIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAgAAAAAAAEZvdD7Duig/vR/SvaM+8r4N6Is+4WAmvgAAAAAAAAAAMxsAvAt7oj2KmHA+eWu+vuAWHT6Lkgg+AAAAAAAAAAAlDJ2+GnGRP1Jsyr4Rywq/8iYXvywMGbwAAAAAAAAAAGb/L71OQaw/wmY/vh8Sz76JKgC+T4EovgAAAAAAAAAAsx6gvf6tDD+sMYQ9oxflvtpMU706K6Q7AAAAAAAAAAAztKq8KDOVvPULO777STg9qWkCPu5gDr4AAIA/AACAPwD+NbxPLkm81ZLiO1DwBjv0fra9o8wUPAAAgD8AAIA/mumWOnj52z5wkvO9HYDOvs8i17zqg8W8AAAAAAAAAAAzFJY8aXgfvLbPkjtzZHk89qqKvQiKUD0AAIA/AACAPzNVFL3DGUm6GUQwMwLOFTBM8Iu6xT/RswAAgD8AAIA/5kcfPQTBpT+gl1U+108Dv3tKOD16QY49AAAAAAAAAAAm2a29pE5lu4luPbyZV4w8pDepPOLrcL0AAIA/AACAP2a5Ib1dmnQ+4r+xPi+M575/qys+eXeJPQAAAAAAAAAAM1VJPEh5vLp6KYa8djB6PDbq8TpTm1q9AACAPwAAgD9muDs9TFaAPsXkg77SX6m+7iz1vSqOd70AAAAAAAAAAIAX7z3ofPY+A1DrvVkn6L7f0eA9nFaxvQAAAAAAAAAAAMTaPOSYuz9VmzY+qjocOgvsVjyoX4Q9AAAAAAAAAABmBvo9paaUPpKQtr4iasq+t/qKvJACz70AAAAAAAAAAM0V8bz+FJI91hhNvvFMmL4zJWK+W9BkPQAAAAAAAAAAmkIQvVwXCrpeqSY41bhvMyFVDjteCUa3AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxRLCIaUjAFDlHSUUpQu"
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVhwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksUhZSMAUOUdJRSlC4="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0012444444444443814,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHN2OSbH6uaMAWyUS9WMAXSUR0CtB9AKfFrEdX2UKGgGR0Bwyerp7kXDaAdL7GgIR0CtB9xJEpiJdX2UKGgGR0BwfGzOX3QEaAdLz2gIR0CtCA2DpTuOdX2UKGgGR0Bw+6FM7EHdaAdL8GgIR0CtCCjqnm7rdX2UKGgGR0BzMbXJ5mh/aAdL32gIR0CtCDkWAPNFdX2UKGgGR0BzWv9qDbrUaAdL8WgIR0CtCHCuEEkjdX2UKGgGR0BxN/m3fAKwaAdL+mgIR0CtCHkyLyc1dX2UKGgGR0BwFf9aUzKtaAdLz2gIR0CtCKKMefZmdX2UKGgGR0BzlKGKyfL+aAdL32gIR0CtCM2HtWuHdX2UKGgGR0ByOwpG4I8haAdL62gIR0CtCUEWqLjxdX2UKGgGR0Bx6u1YyO7yaAdLxWgIR0CtCT/echC/dX2UKGgGR0BxI9xyXD3uaAdL4WgIR0CtCVaXBxgidX2UKGgGR0BxCwIiTt9haAdL3mgIR0CtFKyxzJZGdX2UKGgGR0BydkKF7D2raAdL4WgIR0CtFOfMOf/WdX2UKGgGR0BxF6UB4lhPaAdL5GgIR0CtFO2pqASWdX2UKGgGR0BwP4GC7K7qaAdL02gIR0CtFPZftx+8dX2UKGgGR0BxhcNRWLgoaAdLyWgIR0CtFUqJEYwZdX2UKGgGR0BwyZrJr+HaaAdL3mgIR0CtFU6FuejEdX2UKGgGR0BxMPDm8ujAaAdL22gIR0CtFVfwI+nqdX2UKGgGR0By4mxrzoU0aAdL5GgIR0CtFblxOtW/dX2UKGgGR0ByQI+fRNRFaAdL32gIR0CtFcIzeoDQdX2UKGgGR0BxJDX+VC5VaAdLymgIR0CtFdrilzltdX2UKGgGR0BwJeSdOIqLaAdLxmgIR0CtFeJkGzKLdX2UKGgGR0ByTDymQ8wIaAdLxGgIR0CtFjntv4ucdX2UKGgGR0Bzqf/Ot4iYaAdL+mgIR0CtFoL127nQdX2UKGgGR0BxOIYQ8OkMaAdL42gIR0CtFrUMPSUkdX2UKGgGR0Bv+5EKE385aAdL0mgIR0CtFvnfuTibdX2UKGgGR0Bwu0r5IpYtaAdL5WgIR0CtFwoBaLXMdX2UKGgGR0ByGuhL5AQhaAdLumgIR0CtFyxFRYRvdX2UKGgGR0ByF2PGQ0XQaAdL0GgIR0CtF4v0yxiYdX2UKGgGR0By8VOHnEEUaAdL3GgIR0CtF+C2DxsmdX2UKGgGR0Bxln9wWFewaAdL0WgIR0CtGFY0l7dBdX2UKGgGR0BuS5geA/cGaAdL0GgIR0CtGI62nbZfdX2UKGgGR0BxwbeTFERbaAdLwWgIR0CtGLT5ftx/dX2UKGgGR0By284Ia99MaAdL12gIR0CtGL7Vz6rOdX2UKGgGR0Bw8O4uscQzaAdL8GgIR0CtGSyTQmeEdX2UKGgGR0Bw0suh9LHuaAdLx2gIR0CtGVjxTbWVdX2UKGgGR0BxlrluFYdRaAdL0mgIR0CtGXx9gF5fdX2UKGgGR0BykOimEXchaAdL62gIR0CtGXzVDrqudX2UKGgGR0Bvqq6reZXuaAdL2WgIR0CtGZE6Lfk4dX2UKGgGR0BvNHwEyLydaAdL2mgIR0CtGa9nbqQjdX2UKGgGR0BwJiJ0nw5OaAdL12gIR0CtGh1Jtix3dX2UKGgGR0Bxk/3dsSCfaAdL7GgIR0CtGisfigkDdX2UKGgGR0ByectBfKISaAdLwGgIR0CtGim6XjU/dX2UKGgGR0Bw0uS7oSteaAdL32gIR0CtGlp5E+gUdX2UKGgGR0BzNKTdLxqgaAdL2GgIR0CtGoExIre7dX2UKGgGR0BwJfL9uP3jaAdL0WgIR0CtGoXHaN+9dX2UKGgGR0BvQwRkEs8QaAdL0WgIR0CtGsZQpF1CdX2UKGgGR0BvAEq8UVSGaAdLzWgIR0CtGvhRqGlAdX2UKGgGR0Bx1w4XGff5aAdLzmgIR0CtG1GTs6aLdX2UKGgGR0BwbohMajveaAdL1mgIR0CtG5xPoFFEdX2UKGgGR0Bw5guOCGvfaAdL0mgIR0CtG7GViWmhdX2UKGgGR0Byu2kHlfZ3aAdL1GgIR0CtHAQvg3tKdX2UKGgGR0ByvErupjtpaAdL8mgIR0CtHBXiBGx2dX2UKGgGR0ByxmVJL/S6aAdL1GgIR0CtHCZ0KZ2IdX2UKGgGR0BwhEBaLXMAaAdLyWgIR0CtHCX+l0o0dX2UKGgGR0BxzVQ40dilaAdLzWgIR0CtHB+jVQQ+dX2UKGgGR0BybeoESuhcaAdL3GgIR0CtHFFCLMs6dX2UKGgGR0BzrZcW0qpcaAdL6mgIR0CtHK35vcagdX2UKGgGR0BwNK9qUNayaAdL2mgIR0CtHO7QswtbdX2UKGgGR0BwwQNwzch1aAdL4GgIR0CtHRyRKYiQdX2UKGgGR0By8X0QK8cuaAdL0GgIR0CtHRrWAf+1dX2UKGgGR0ByHtBJI1+BaAdL82gIR0CtHVwhW5pbdX2UKGgGR0By90dQwblzaAdL3GgIR0CtHXBgNPP+dX2UKGgGR0BxTLLhaTwEaAdL5mgIR0CtHZHH/95ydX2UKGgGR0Bx5HdN34bkaAdL12gIR0CtHaoaUA1fdX2UKGgGR0ByFRtP557gaAdL32gIR0CtHfOZkTYedX2UKGgGR0BwcA2GZeAvaAdLv2gIR0CtHjw5eZ5SdX2UKGgGR0By9aBwuM/AaAdL32gIR0CtHk9Xko4NdX2UKGgGR0Byqw8W9DhMaAdLwWgIR0CtHppqh11XdX2UKGgGR0BxkiSDAaegaAdL5WgIR0CtHquRcNYsdX2UKGgGR0Bw8oFhXr+paAdLx2gIR0CtHtInBtUGdX2UKGgGR0BxS8uGsV+JaAdLzGgIR0CtHtQ9A5aNdX2UKGgGR0BxeeyIHkcTaAdLyWgIR0CtHwckD6nBdX2UKGgGR0BxUacoYvWZaAdL3mgIR0CtHxh/7SApdX2UKGgGR0BxbtF9a2WqaAdL52gIR0CtHz8awUxmdX2UKGgGR0BxZJQj2SMcaAdL2WgIR0CtH6aeGwiadX2UKGgGR0BuSOHzpX6qaAdLy2gIR0CtH9nT7VJ+dX2UKGgGR0BzHB8eCCjDaAdN0gJoCEdArR/riS7oS3V9lChoBkdAcFALYPGyX2gHS9RoCEdArR/1PJq7AnV9lChoBkdAcUA42CNCJGgHS85oCEdArSAgv6CUYHV9lChoBkdAc9ZhH9WIXWgHS/FoCEdArSA2BMBZIXV9lChoBkdAcdqnXNC7b2gHS9toCEdArSBdWn0kGHV9lChoBkdAcWv32VVxTGgHS9NoCEdArSBhIxxku3V9lChoBkdAZydsP8Q7LmgHTegDaAhHQK0ge98JD3N1fZQoaAZHQHEv8u3+dbxoB0vlaAhHQK0grl/6O5t1fZQoaAZHQHGelzdUKiRoB0vPaAhHQK0g8j2SMcZ1fZQoaAZHQHKCL/XGwRpoB0voaAhHQK0g/93KSxJ1fZQoaAZHQHIA02xY7q9oB0vBaAhHQK0hGkE9t/F1fZQoaAZHQHAZ0QTVUddoB0veaAhHQK0hM6DoQnR1fZQoaAZHQHEQ6zmfXf9oB0vAaAhHQK0hSiB5HEx1fZQoaAZHQHIxxO+IuXhoB0vjaAhHQK0hmSNfgJl1fZQoaAZHQHF6foePq9poB0vFaAhHQK0hn4593KV1fZQoaAZHQHDXrIYFaB9oB0vSaAhHQK0huB/Zuht1fZQoaAZHQHGw7TYukDZoB0vlaAhHQK0hw1KoQ4F1fZQoaAZHQHMZtZV4oqloB0vNaAhHQK0h28DB/I91fZQoaAZHQHMCIFiay8loB0vOaAhHQK0iM6oVEeB1fZQoaAZHQHCR9NSIgvFoB0vXaAhHQK0ilNhVlwt1fZQoaAZHQHM1daY/mkpoB0veaAhHQK0imtuk1uR1fZQoaAZHQHB7AqmTC+FoB0vMaAhHQK0iprs0HhV1ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 880,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
+
"n_envs": 20,
|
80 |
+
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:535d88761c689da8f82a4c45ff035b4d8e245cd2dd545bd2b875af0640c70daf
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d32885980a3ee99ed9a6a69b76fe9c098fc29ac2a9575f94071e3759252843a
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 284.442209, "std_reward": 17.08594530963635, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-13T11:47:19.824969"}
|