Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +23 -23
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 290.83 +/- 17.22
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7cba19a01750>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7cba19a017e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7cba19a01870>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7cba19a01900>", "_build": "<function ActorCriticPolicy._build at 0x7cba19a01990>", "forward": "<function ActorCriticPolicy.forward at 0x7cba19a01a20>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7cba19a01ab0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7cba19a01b40>", "_predict": "<function ActorCriticPolicy._predict at 0x7cba19a01bd0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7cba19a01c60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7cba19a01cf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7cba19a01d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cba199a2180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 4505600, "_total_timesteps": 4500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702463413160688265, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAgAAAAAAAEZvdD7Duig/vR/SvaM+8r4N6Is+4WAmvgAAAAAAAAAAMxsAvAt7oj2KmHA+eWu+vuAWHT6Lkgg+AAAAAAAAAAAlDJ2+GnGRP1Jsyr4Rywq/8iYXvywMGbwAAAAAAAAAAGb/L71OQaw/wmY/vh8Sz76JKgC+T4EovgAAAAAAAAAAsx6gvf6tDD+sMYQ9oxflvtpMU706K6Q7AAAAAAAAAAAztKq8KDOVvPULO777STg9qWkCPu5gDr4AAIA/AACAPwD+NbxPLkm81ZLiO1DwBjv0fra9o8wUPAAAgD8AAIA/mumWOnj52z5wkvO9HYDOvs8i17zqg8W8AAAAAAAAAAAzFJY8aXgfvLbPkjtzZHk89qqKvQiKUD0AAIA/AACAPzNVFL3DGUm6GUQwMwLOFTBM8Iu6xT/RswAAgD8AAIA/5kcfPQTBpT+gl1U+108Dv3tKOD16QY49AAAAAAAAAAAm2a29pE5lu4luPbyZV4w8pDepPOLrcL0AAIA/AACAP2a5Ib1dmnQ+4r+xPi+M575/qys+eXeJPQAAAAAAAAAAM1VJPEh5vLp6KYa8djB6PDbq8TpTm1q9AACAPwAAgD9muDs9TFaAPsXkg77SX6m+7iz1vSqOd70AAAAAAAAAAIAX7z3ofPY+A1DrvVkn6L7f0eA9nFaxvQAAAAAAAAAAAMTaPOSYuz9VmzY+qjocOgvsVjyoX4Q9AAAAAAAAAABmBvo9paaUPpKQtr4iasq+t/qKvJACz70AAAAAAAAAAM0V8bz+FJI91hhNvvFMmL4zJWK+W9BkPQAAAAAAAAAAmkIQvVwXCrpeqSY41bhvMyFVDjteCUa3AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxRLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksUhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0012444444444443814, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHN2OSbH6uaMAWyUS9WMAXSUR0CtB9AKfFrEdX2UKGgGR0Bwyerp7kXDaAdL7GgIR0CtB9xJEpiJdX2UKGgGR0BwfGzOX3QEaAdLz2gIR0CtCA2DpTuOdX2UKGgGR0Bw+6FM7EHdaAdL8GgIR0CtCCjqnm7rdX2UKGgGR0BzMbXJ5mh/aAdL32gIR0CtCDkWAPNFdX2UKGgGR0BzWv9qDbrUaAdL8WgIR0CtCHCuEEkjdX2UKGgGR0BxN/m3fAKwaAdL+mgIR0CtCHkyLyc1dX2UKGgGR0BwFf9aUzKtaAdLz2gIR0CtCKKMefZmdX2UKGgGR0BzlKGKyfL+aAdL32gIR0CtCM2HtWuHdX2UKGgGR0ByOwpG4I8haAdL62gIR0CtCUEWqLjxdX2UKGgGR0Bx6u1YyO7yaAdLxWgIR0CtCT/echC/dX2UKGgGR0BxI9xyXD3uaAdL4WgIR0CtCVaXBxgidX2UKGgGR0BxCwIiTt9haAdL3mgIR0CtFKyxzJZGdX2UKGgGR0BydkKF7D2raAdL4WgIR0CtFOfMOf/WdX2UKGgGR0BxF6UB4lhPaAdL5GgIR0CtFO2pqASWdX2UKGgGR0BwP4GC7K7qaAdL02gIR0CtFPZftx+8dX2UKGgGR0BxhcNRWLgoaAdLyWgIR0CtFUqJEYwZdX2UKGgGR0BwyZrJr+HaaAdL3mgIR0CtFU6FuejEdX2UKGgGR0BxMPDm8ujAaAdL22gIR0CtFVfwI+nqdX2UKGgGR0By4mxrzoU0aAdL5GgIR0CtFblxOtW/dX2UKGgGR0ByQI+fRNRFaAdL32gIR0CtFcIzeoDQdX2UKGgGR0BxJDX+VC5VaAdLymgIR0CtFdrilzltdX2UKGgGR0BwJeSdOIqLaAdLxmgIR0CtFeJkGzKLdX2UKGgGR0ByTDymQ8wIaAdLxGgIR0CtFjntv4ucdX2UKGgGR0Bzqf/Ot4iYaAdL+mgIR0CtFoL127nQdX2UKGgGR0BxOIYQ8OkMaAdL42gIR0CtFrUMPSUkdX2UKGgGR0Bv+5EKE385aAdL0mgIR0CtFvnfuTibdX2UKGgGR0Bwu0r5IpYtaAdL5WgIR0CtFwoBaLXMdX2UKGgGR0ByGuhL5AQhaAdLumgIR0CtFyxFRYRvdX2UKGgGR0ByF2PGQ0XQaAdL0GgIR0CtF4v0yxiYdX2UKGgGR0By8VOHnEEUaAdL3GgIR0CtF+C2DxsmdX2UKGgGR0Bxln9wWFewaAdL0WgIR0CtGFY0l7dBdX2UKGgGR0BuS5geA/cGaAdL0GgIR0CtGI62nbZfdX2UKGgGR0BxwbeTFERbaAdLwWgIR0CtGLT5ftx/dX2UKGgGR0By284Ia99MaAdL12gIR0CtGL7Vz6rOdX2UKGgGR0Bw8O4uscQzaAdL8GgIR0CtGSyTQmeEdX2UKGgGR0Bw0suh9LHuaAdLx2gIR0CtGVjxTbWVdX2UKGgGR0BxlrluFYdRaAdL0mgIR0CtGXx9gF5fdX2UKGgGR0BykOimEXchaAdL62gIR0CtGXzVDrqudX2UKGgGR0Bvqq6reZXuaAdL2WgIR0CtGZE6Lfk4dX2UKGgGR0BvNHwEyLydaAdL2mgIR0CtGa9nbqQjdX2UKGgGR0BwJiJ0nw5OaAdL12gIR0CtGh1Jtix3dX2UKGgGR0Bxk/3dsSCfaAdL7GgIR0CtGisfigkDdX2UKGgGR0ByectBfKISaAdLwGgIR0CtGim6XjU/dX2UKGgGR0Bw0uS7oSteaAdL32gIR0CtGlp5E+gUdX2UKGgGR0BzNKTdLxqgaAdL2GgIR0CtGoExIre7dX2UKGgGR0BwJfL9uP3jaAdL0WgIR0CtGoXHaN+9dX2UKGgGR0BvQwRkEs8QaAdL0WgIR0CtGsZQpF1CdX2UKGgGR0BvAEq8UVSGaAdLzWgIR0CtGvhRqGlAdX2UKGgGR0Bx1w4XGff5aAdLzmgIR0CtG1GTs6aLdX2UKGgGR0BwbohMajveaAdL1mgIR0CtG5xPoFFEdX2UKGgGR0Bw5guOCGvfaAdL0mgIR0CtG7GViWmhdX2UKGgGR0Byu2kHlfZ3aAdL1GgIR0CtHAQvg3tKdX2UKGgGR0ByvErupjtpaAdL8mgIR0CtHBXiBGx2dX2UKGgGR0ByxmVJL/S6aAdL1GgIR0CtHCZ0KZ2IdX2UKGgGR0BwhEBaLXMAaAdLyWgIR0CtHCX+l0o0dX2UKGgGR0BxzVQ40dilaAdLzWgIR0CtHB+jVQQ+dX2UKGgGR0BybeoESuhcaAdL3GgIR0CtHFFCLMs6dX2UKGgGR0BzrZcW0qpcaAdL6mgIR0CtHK35vcagdX2UKGgGR0BwNK9qUNayaAdL2mgIR0CtHO7QswtbdX2UKGgGR0BwwQNwzch1aAdL4GgIR0CtHRyRKYiQdX2UKGgGR0By8X0QK8cuaAdL0GgIR0CtHRrWAf+1dX2UKGgGR0ByHtBJI1+BaAdL82gIR0CtHVwhW5pbdX2UKGgGR0By90dQwblzaAdL3GgIR0CtHXBgNPP+dX2UKGgGR0BxTLLhaTwEaAdL5mgIR0CtHZHH/95ydX2UKGgGR0Bx5HdN34bkaAdL12gIR0CtHaoaUA1fdX2UKGgGR0ByFRtP557gaAdL32gIR0CtHfOZkTYedX2UKGgGR0BwcA2GZeAvaAdLv2gIR0CtHjw5eZ5SdX2UKGgGR0By9aBwuM/AaAdL32gIR0CtHk9Xko4NdX2UKGgGR0Byqw8W9DhMaAdLwWgIR0CtHppqh11XdX2UKGgGR0BxkiSDAaegaAdL5WgIR0CtHquRcNYsdX2UKGgGR0Bw8oFhXr+paAdLx2gIR0CtHtInBtUGdX2UKGgGR0BxS8uGsV+JaAdLzGgIR0CtHtQ9A5aNdX2UKGgGR0BxeeyIHkcTaAdLyWgIR0CtHwckD6nBdX2UKGgGR0BxUacoYvWZaAdL3mgIR0CtHxh/7SApdX2UKGgGR0BxbtF9a2WqaAdL52gIR0CtHz8awUxmdX2UKGgGR0BxZJQj2SMcaAdL2WgIR0CtH6aeGwiadX2UKGgGR0BuSOHzpX6qaAdLy2gIR0CtH9nT7VJ+dX2UKGgGR0BzHB8eCCjDaAdN0gJoCEdArR/riS7oS3V9lChoBkdAcFALYPGyX2gHS9RoCEdArR/1PJq7AnV9lChoBkdAcUA42CNCJGgHS85oCEdArSAgv6CUYHV9lChoBkdAc9ZhH9WIXWgHS/FoCEdArSA2BMBZIXV9lChoBkdAcdqnXNC7b2gHS9toCEdArSBdWn0kGHV9lChoBkdAcWv32VVxTGgHS9NoCEdArSBhIxxku3V9lChoBkdAZydsP8Q7LmgHTegDaAhHQK0ge98JD3N1fZQoaAZHQHEv8u3+dbxoB0vlaAhHQK0grl/6O5t1fZQoaAZHQHGelzdUKiRoB0vPaAhHQK0g8j2SMcZ1fZQoaAZHQHKCL/XGwRpoB0voaAhHQK0g/93KSxJ1fZQoaAZHQHIA02xY7q9oB0vBaAhHQK0hGkE9t/F1fZQoaAZHQHAZ0QTVUddoB0veaAhHQK0hM6DoQnR1fZQoaAZHQHEQ6zmfXf9oB0vAaAhHQK0hSiB5HEx1fZQoaAZHQHIxxO+IuXhoB0vjaAhHQK0hmSNfgJl1fZQoaAZHQHF6foePq9poB0vFaAhHQK0hn4593KV1fZQoaAZHQHDXrIYFaB9oB0vSaAhHQK0huB/Zuht1fZQoaAZHQHGw7TYukDZoB0vlaAhHQK0hw1KoQ4F1fZQoaAZHQHMZtZV4oqloB0vNaAhHQK0h28DB/I91fZQoaAZHQHMCIFiay8loB0vOaAhHQK0iM6oVEeB1fZQoaAZHQHCR9NSIgvFoB0vXaAhHQK0ilNhVlwt1fZQoaAZHQHM1daY/mkpoB0veaAhHQK0imtuk1uR1fZQoaAZHQHB7AqmTC+FoB0vMaAhHQK0iprs0HhV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 880, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 20, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78e8d30bbbe0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78e8d30bbc70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78e8d30bbd00>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78e8d30bbd90>", "_build": "<function ActorCriticPolicy._build at 0x78e8d30bbe20>", "forward": "<function ActorCriticPolicy.forward at 0x78e8d30bbeb0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78e8d30bbf40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78e8d30c8040>", "_predict": "<function ActorCriticPolicy._predict at 0x78e8d30c80d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78e8d30c8160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78e8d30c81f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78e8d30c8280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78e8d3263c40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 7012500, "_total_timesteps": 7000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702477730971369199, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAwAAAAAAAJoSoT3jhAs9vSjCvl/Ih76Uo969BsTLvAAAAAAAAAAAZlqWPK7xgrpoHl05kfdWNASEKzq2yH64AACAPwAAgD+aLUu8j946uo/PGzmARAGzMc9qul7UNLgAAIA/AACAP9pqnz0GcZc/qVfKPkx0Q7+Su8w9/nIpPgAAAAAAAAAA83y4vQRHPz7eOsc+LUrWvgKuND6wWTk+AAAAAAAAAABmduC6AynCP2ZrxLruGIe92acFPcgA37oAAAAAAAAAAFqmZD5kYDM/oBC4OnbrGb8Ae4U+Kg6OvQAAAAAAAAAAzYE7vtzHxD4NQas+3M8Kv1Meob1t7DU+AAAAAAAAAABz5jC+4YYHPyzAqz7pkhi//a7cvXMdhT4AAAAAAAAAAAAKebz2L7c/8ixDv1yz3z5oOXw8S8wFPgAAAAAAAAAAzZYIPEi0qLxa4IC+fexWPeYixT3bBnG9AACAPwAAgD8zjyu8FGCbup8jqrQ2WluwDB8aOYWUejMAAIA/AAAAACZBTj4x5R8/pFUZvJEXI7+oGmE+wPKevQAAAAAAAAAA84L7vdAMjz7vWY8+m2DYvr1XijwejjQ+AAAAAAAAAAAzalA9ODLGPcMUcb1Tp7e+eaHZPeoCWr0AAAAAAAAAAGbQwjysyqg80PuivUrHnL6gyG09T5NFuwAAAAAAAAAAM3/GPIPtY7wZ7xy+fXTmPDK7wj2x8be9AACAPwAAgD8zJ6M8XKc3uq8oITgmUlMzaCSgO+oFPrcAAIA/AACAP4AqFD6FblQ+kp7LvjWThL6TF8+9Vl0ivgAAAAAAAAAAQFaOPUjpoLqBnCM9er+FPBzCGTu6cWm9AACAPwAAgD86Eym+Rg1dPwE7mb2b7Q+/Nl3nvpb3gT0AAAAAAAAAADOJB7x7Ipy67FufvCPW+ziPsO85hv9iuAAAgD8AAIA/szPavScYTT+GG+I9YbM6vxbgSr7N8Pw9AAAAAAAAAADN65O8uJapuYkzpzqQShk2siljO8uvyLkAAIA/AACAPwDZj7ylBjY/b4S+PUo0PL+6X6+9JgHkPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksZSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVjAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxmFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0017857142857142794, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHG/7UTcqOOMAWyUS9SMAXSUR0C0BmpR4yGjdX2UKGgGR0ByD19nbqQjaAdLsWgIR0C0Bm4MvyskdX2UKGgGR0Byht2TxG2DaAdLx2gIR0C0Bn0ORT0hdX2UKGgGR0BuwPZoPCl8aAdLumgIR0C0BpC+cpb2dX2UKGgGR0Bx+l6X0Gu+aAdLz2gIR0C0Bqs0Ltu2dX2UKGgGR0BwphJZntfHaAdLqWgIR0C0BqklZ5iWdX2UKGgGR0BzbwjC53C9aAdLyGgIR0C0BrDfJmuldX2UKGgGR0BxZUfFJg9eaAdLxGgIR0C0BskpEx7BdX2UKGgGR0ByuuyZ8a4uaAdL52gIR0C0BsuPJaJRdX2UKGgGR0BvEpVAAyVOaAdLtWgIR0C0BtOt4iX6dX2UKGgGR0Bz5ScG1QZXaAdLuWgIR0C0Bt6iwjdIdX2UKGgGR0ByRIRODaoNaAdLm2gIR0C0BuXmvGIbdX2UKGgGR0Bv+ALCvX9SaAdLtWgIR0C0Bu4iPhhqdX2UKGgGR0BxAm6NEPUbaAdLu2gIR0C0Bvg2606YdX2UKGgGR0BwZgqMFUyYaAdLt2gIR0C0Bwu/gzgudX2UKGgGR0Bu1ngiu+yraAdLrWgIR0C0Bw4IF/x2dX2UKGgGR0Bxt9+nZTQ3aAdLzmgIR0C0BxeN96TodX2UKGgGR0ByY4Z0jkdWaAdL12gIR0C0BxrJjlPrdX2UKGgGR0BwMyDK5kLAaAdLq2gIR0C0ByoB7u2JdX2UKGgGR0BxrvCJoCdSaAdLy2gIR0C0B03nyNGWdX2UKGgGR0BR4FT72tdSaAdLeGgIR0C0B08V1wHadX2UKGgGR0BxnQ9Oh0yQaAdLy2gIR0C0B4kjTrmhdX2UKGgGR0BxwcVrRBu5aAdLyWgIR0C0B62Dxsl+dX2UKGgGR0BwHeRbKRuCaAdLrWgIR0C0B7JlvqC6dX2UKGgGR0Bx7ludf9gnaAdL2WgIR0C0B/t8/lhgdX2UKGgGR0Bx23p2U0N0aAdLw2gIR0C0CAqqn3tbdX2UKGgGR0BwSuG5+YtyaAdLuGgIR0C0CA/YnOSodX2UKGgGR0ByOdBomG/OaAdLvGgIR0C0CBr1Iy0sdX2UKGgGR0BwhkNKAavSaAdLumgIR0C0CB2PPszEdX2UKGgGR0Bx7cfxMFlkaAdL7mgIR0C0CCKSPluFdX2UKGgGR0BzMvd8Aq/eaAdL4WgIR0C0CDVxwQ18dX2UKGgGR0BwsRgLJCBxaAdLv2gIR0C0CEHt0FKTdX2UKGgGR0BxuvDpC8e0aAdLxGgIR0C0CFQBtDUmdX2UKGgGR0BymSQq7ROUaAdLvWgIR0C0CGEaVD8cdX2UKGgGR0ByBwhr30wraAdLrWgIR0C0CGDrqt5ldX2UKGgGR0Bzmwtbs4T9aAdL12gIR0C0CIOizsyBdX2UKGgGR0BxfcKpkwvhaAdLuWgIR0C0CIagAZKndX2UKGgGR0BxmuCYkVvdaAdLs2gIR0C0CIuoP07KdX2UKGgGR0BzafoicG1QaAdL8GgIR0C0CKLHyVfNdX2UKGgGR0Bx9TMpw0fpaAdLzWgIR0C0CKrG3nZCdX2UKGgGR0ByEsIPbwjMaAdLsWgIR0C0CK/7m+0xdX2UKGgGR0BzHA+Y+jdpaAdL7GgIR0C0CLSd4FA3dX2UKGgGR0BwMR8QZn+RaAdL3WgIR0C0CL9/4IrwdX2UKGgGR0BzsRk3CKrJaAdLxWgIR0C0CNVo+OfedX2UKGgGR0Bz6w078vVWaAdL+GgIR0C0CNtlyzX0dX2UKGgGR0BwRQqbz9S/aAdLvGgIR0C0CSBouf29dX2UKGgGR0By+QZaV2RraAdL1mgIR0C0CTGUB4lhdX2UKGgGR0BzeRqDbrTqaAdLxGgIR0C0CTUM5OrRdX2UKGgGR0BvUd+gDifhaAdLtWgIR0C0CX0R3/xUdX2UKGgGR0ByN+YnfEXMaAdLu2gIR0C0CYgP3BYWdX2UKGgGR0BwdoYWLxZuaAdLwWgIR0C0CYpsTFl1dX2UKGgGR0BwwI5FPSDzaAdLxmgIR0C0CZBO+IuXdX2UKGgGR0ByNlhG6PKdaAdL32gIR0C0CbZmdy1edX2UKGgGR0Bx3c+eOGTLaAdL12gIR0C0CcpxzaK2dX2UKGgGR0BzXNWhh6SlaAdLymgIR0C0CdBN/OMVdX2UKGgGR0BzGV55Z8rqaAdLuWgIR0C0Cc9VR1oydX2UKGgGR0BxNKL74zrNaAdLwmgIR0C0CdRNEgGKdX2UKGgGR0B0NFAxBVuKaAdL1GgIR0C0CdfU8V59dX2UKGgGR0BxxgWznieeaAdLzWgIR0C0CfZJK8L8dX2UKGgGR0BxwdYU34sVaAdLuWgIR0C0Cfp6dDpkdX2UKGgGR0Bv6ZTfixVyaAdLwGgIR0C0Cf+dCmdidX2UKGgGR0BwyzDvVmSRaAdLtWgIR0C0CgeWOZLJdX2UKGgGR0Bzn53KSxJNaAdLwWgIR0C0Ci8cyWRjdX2UKGgGR0Byvu5AhStOaAdL4mgIR0C0CkJBLPD6dX2UKGgGR0BydtNSIgvEaAdLvWgIR0C0ClDXFtKqdX2UKGgGR0Bwq/xiG34LaAdLyGgIR0C0CmAZXMhYdX2UKGgGR0By1MzQ/oq1aAdL52gIR0C0CnDCP6sRdX2UKGgGR0Byu9iF0xM4aAdL52gIR0C0Cna7mMfjdX2UKGgGR0BzOWMCLdeqaAdL4mgIR0C0Cn5SiudPdX2UKGgGR0Bwnl94NZvDaAdLr2gIR0C0Cpb8zhxYdX2UKGgGR0Bu4tpj+aScaAdLyWgIR0C0CrirDIikdX2UKGgGR0BzAQ2uPmxMaAdLxWgIR0C0CsIPTXrddX2UKGgGR0ByAvgm7aqTaAdLqmgIR0C0Ct/VEuxsdX2UKGgGR0ByTn0UXYUWaAdNXwNoCEdAtAr26reZX3V9lChoBkdAcNufDk2gnWgHS8BoCEdAtAsNWeYlY3V9lChoBkdAcYaijtXxOWgHS6RoCEdAtAsimpEQXnV9lChoBkdAcO6zS1E3KmgHS8FoCEdAtAslt78ejnV9lChoBkdAcMmVFx4pt2gHS6hoCEdAtAs4FotcwHV9lChoBkdAcwZIAOrhi2gHS71oCEdAtAtJFRYRunV9lChoBkdAclkxwhnrZGgHS9doCEdAtAtWFEiMYXV9lChoBkdAcVmvy9VWCGgHS7toCEdAtAthjkMkQnV9lChoBkdAc0Tl3hXKbWgHS8ZoCEdAtAt9KHwgDHV9lChoBkdAcFsLXL/0d2gHS8NoCEdAtAt/lHSWq3V9lChoBkdAcb4p9qk/KWgHS8BoCEdAtAueLuQZGnV9lChoBkdAcStZmZmZmmgHS9BoCEdAtAvQPbwjMXV9lChoBkdAckK+PRzBAWgHS9VoCEdAtAvxCUornXV9lChoBkdAcw0dgOSW7mgHS91oCEdAtAv4yKvV3HV9lChoBkdAchjhLGrCFmgHS6FoCEdAtAv+KNyYHHV9lChoBkdAcLU12JSBLGgHS8FoCEdAtAwMxEfDDXV9lChoBkdAcyn6be/HpGgHS9JoCEdAtAwfkhib2HV9lChoBkdAc5BudwvQGGgHS8hoCEdAtAwxi5NGmXV9lChoBkdAbxzmPo3aSWgHS6toCEdAtAw7JIUah3V9lChoBkdAcmGx46fapWgHS8BoCEdAtAxUSrYGuHV9lChoBkdAcbPlOoHcDmgHS8toCEdAtAxfzCk43nV9lChoBkdAck7YaYNRWWgHS65oCEdAtAxporWiDnV9lChoBkdAc+XPYFqzq2gHS7BoCEdAtAx3+aScLHV9lChoBkdAdC5echC+lGgHS+toCEdAtAyahcqvvHV9lChoBkdAcuRRXfZVXGgHS8JoCEdAtAzmdBjWkXV9lChoBkdAcj2cJdB0IWgHS89oCEdAtAzyBK+SKXV9lChoBkdAcoWuyu6mO2gHS8RoCEdAtA0d3Sro4nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 748, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 25, "n_steps": 1500, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e092a2800e2a654f5841d252c565b43da315c00ce54e132c677c88a4743de987
|
3 |
+
size 148323
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,54 +4,54 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
@@ -76,8 +76,8 @@
|
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
-
"n_envs":
|
80 |
-
"n_steps":
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78e8d30bbbe0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78e8d30bbc70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78e8d30bbd00>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78e8d30bbd90>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78e8d30bbe20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78e8d30bbeb0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78e8d30bbf40>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78e8d30c8040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78e8d30c80d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78e8d30c8160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78e8d30c81f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78e8d30c8280>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78e8d3263c40>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 7012500,
|
25 |
+
"_total_timesteps": 7000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1702477730971369199,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAwAAAAAAAJoSoT3jhAs9vSjCvl/Ih76Uo969BsTLvAAAAAAAAAAAZlqWPK7xgrpoHl05kfdWNASEKzq2yH64AACAPwAAgD+aLUu8j946uo/PGzmARAGzMc9qul7UNLgAAIA/AACAP9pqnz0GcZc/qVfKPkx0Q7+Su8w9/nIpPgAAAAAAAAAA83y4vQRHPz7eOsc+LUrWvgKuND6wWTk+AAAAAAAAAABmduC6AynCP2ZrxLruGIe92acFPcgA37oAAAAAAAAAAFqmZD5kYDM/oBC4OnbrGb8Ae4U+Kg6OvQAAAAAAAAAAzYE7vtzHxD4NQas+3M8Kv1Meob1t7DU+AAAAAAAAAABz5jC+4YYHPyzAqz7pkhi//a7cvXMdhT4AAAAAAAAAAAAKebz2L7c/8ixDv1yz3z5oOXw8S8wFPgAAAAAAAAAAzZYIPEi0qLxa4IC+fexWPeYixT3bBnG9AACAPwAAgD8zjyu8FGCbup8jqrQ2WluwDB8aOYWUejMAAIA/AAAAACZBTj4x5R8/pFUZvJEXI7+oGmE+wPKevQAAAAAAAAAA84L7vdAMjz7vWY8+m2DYvr1XijwejjQ+AAAAAAAAAAAzalA9ODLGPcMUcb1Tp7e+eaHZPeoCWr0AAAAAAAAAAGbQwjysyqg80PuivUrHnL6gyG09T5NFuwAAAAAAAAAAM3/GPIPtY7wZ7xy+fXTmPDK7wj2x8be9AACAPwAAgD8zJ6M8XKc3uq8oITgmUlMzaCSgO+oFPrcAAIA/AACAP4AqFD6FblQ+kp7LvjWThL6TF8+9Vl0ivgAAAAAAAAAAQFaOPUjpoLqBnCM9er+FPBzCGTu6cWm9AACAPwAAgD86Eym+Rg1dPwE7mb2b7Q+/Nl3nvpb3gT0AAAAAAAAAADOJB7x7Ipy67FufvCPW+ziPsO85hv9iuAAAgD8AAIA/szPavScYTT+GG+I9YbM6vxbgSr7N8Pw9AAAAAAAAAADN65O8uJapuYkzpzqQShk2siljO8uvyLkAAIA/AACAPwDZj7ylBjY/b4S+PUo0PL+6X6+9JgHkPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksZSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVjAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxmFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0017857142857142794,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHG/7UTcqOOMAWyUS9SMAXSUR0C0BmpR4yGjdX2UKGgGR0ByD19nbqQjaAdLsWgIR0C0Bm4MvyskdX2UKGgGR0Byht2TxG2DaAdLx2gIR0C0Bn0ORT0hdX2UKGgGR0BuwPZoPCl8aAdLumgIR0C0BpC+cpb2dX2UKGgGR0Bx+l6X0Gu+aAdLz2gIR0C0Bqs0Ltu2dX2UKGgGR0BwphJZntfHaAdLqWgIR0C0BqklZ5iWdX2UKGgGR0BzbwjC53C9aAdLyGgIR0C0BrDfJmuldX2UKGgGR0BxZUfFJg9eaAdLxGgIR0C0BskpEx7BdX2UKGgGR0ByuuyZ8a4uaAdL52gIR0C0BsuPJaJRdX2UKGgGR0BvEpVAAyVOaAdLtWgIR0C0BtOt4iX6dX2UKGgGR0Bz5ScG1QZXaAdLuWgIR0C0Bt6iwjdIdX2UKGgGR0ByRIRODaoNaAdLm2gIR0C0BuXmvGIbdX2UKGgGR0Bv+ALCvX9SaAdLtWgIR0C0Bu4iPhhqdX2UKGgGR0BxAm6NEPUbaAdLu2gIR0C0Bvg2606YdX2UKGgGR0BwZgqMFUyYaAdLt2gIR0C0Bwu/gzgudX2UKGgGR0Bu1ngiu+yraAdLrWgIR0C0Bw4IF/x2dX2UKGgGR0Bxt9+nZTQ3aAdLzmgIR0C0BxeN96TodX2UKGgGR0ByY4Z0jkdWaAdL12gIR0C0BxrJjlPrdX2UKGgGR0BwMyDK5kLAaAdLq2gIR0C0ByoB7u2JdX2UKGgGR0BxrvCJoCdSaAdLy2gIR0C0B03nyNGWdX2UKGgGR0BR4FT72tdSaAdLeGgIR0C0B08V1wHadX2UKGgGR0BxnQ9Oh0yQaAdLy2gIR0C0B4kjTrmhdX2UKGgGR0BxwcVrRBu5aAdLyWgIR0C0B62Dxsl+dX2UKGgGR0BwHeRbKRuCaAdLrWgIR0C0B7JlvqC6dX2UKGgGR0Bx7ludf9gnaAdL2WgIR0C0B/t8/lhgdX2UKGgGR0Bx23p2U0N0aAdLw2gIR0C0CAqqn3tbdX2UKGgGR0BwSuG5+YtyaAdLuGgIR0C0CA/YnOSodX2UKGgGR0ByOdBomG/OaAdLvGgIR0C0CBr1Iy0sdX2UKGgGR0BwhkNKAavSaAdLumgIR0C0CB2PPszEdX2UKGgGR0Bx7cfxMFlkaAdL7mgIR0C0CCKSPluFdX2UKGgGR0BzMvd8Aq/eaAdL4WgIR0C0CDVxwQ18dX2UKGgGR0BwsRgLJCBxaAdLv2gIR0C0CEHt0FKTdX2UKGgGR0BxuvDpC8e0aAdLxGgIR0C0CFQBtDUmdX2UKGgGR0BymSQq7ROUaAdLvWgIR0C0CGEaVD8cdX2UKGgGR0ByBwhr30wraAdLrWgIR0C0CGDrqt5ldX2UKGgGR0Bzmwtbs4T9aAdL12gIR0C0CIOizsyBdX2UKGgGR0BxfcKpkwvhaAdLuWgIR0C0CIagAZKndX2UKGgGR0BxmuCYkVvdaAdLs2gIR0C0CIuoP07KdX2UKGgGR0BzafoicG1QaAdL8GgIR0C0CKLHyVfNdX2UKGgGR0Bx9TMpw0fpaAdLzWgIR0C0CKrG3nZCdX2UKGgGR0ByEsIPbwjMaAdLsWgIR0C0CK/7m+0xdX2UKGgGR0BzHA+Y+jdpaAdL7GgIR0C0CLSd4FA3dX2UKGgGR0BwMR8QZn+RaAdL3WgIR0C0CL9/4IrwdX2UKGgGR0BzsRk3CKrJaAdLxWgIR0C0CNVo+OfedX2UKGgGR0Bz6w078vVWaAdL+GgIR0C0CNtlyzX0dX2UKGgGR0BwRQqbz9S/aAdLvGgIR0C0CSBouf29dX2UKGgGR0By+QZaV2RraAdL1mgIR0C0CTGUB4lhdX2UKGgGR0BzeRqDbrTqaAdLxGgIR0C0CTUM5OrRdX2UKGgGR0BvUd+gDifhaAdLtWgIR0C0CX0R3/xUdX2UKGgGR0ByN+YnfEXMaAdLu2gIR0C0CYgP3BYWdX2UKGgGR0BwdoYWLxZuaAdLwWgIR0C0CYpsTFl1dX2UKGgGR0BwwI5FPSDzaAdLxmgIR0C0CZBO+IuXdX2UKGgGR0ByNlhG6PKdaAdL32gIR0C0CbZmdy1edX2UKGgGR0Bx3c+eOGTLaAdL12gIR0C0CcpxzaK2dX2UKGgGR0BzXNWhh6SlaAdLymgIR0C0CdBN/OMVdX2UKGgGR0BzGV55Z8rqaAdLuWgIR0C0Cc9VR1oydX2UKGgGR0BxNKL74zrNaAdLwmgIR0C0CdRNEgGKdX2UKGgGR0B0NFAxBVuKaAdL1GgIR0C0CdfU8V59dX2UKGgGR0BxxgWznieeaAdLzWgIR0C0CfZJK8L8dX2UKGgGR0BxwdYU34sVaAdLuWgIR0C0Cfp6dDpkdX2UKGgGR0Bv6ZTfixVyaAdLwGgIR0C0Cf+dCmdidX2UKGgGR0BwyzDvVmSRaAdLtWgIR0C0CgeWOZLJdX2UKGgGR0Bzn53KSxJNaAdLwWgIR0C0Ci8cyWRjdX2UKGgGR0Byvu5AhStOaAdL4mgIR0C0CkJBLPD6dX2UKGgGR0BydtNSIgvEaAdLvWgIR0C0ClDXFtKqdX2UKGgGR0Bwq/xiG34LaAdLyGgIR0C0CmAZXMhYdX2UKGgGR0By1MzQ/oq1aAdL52gIR0C0CnDCP6sRdX2UKGgGR0Byu9iF0xM4aAdL52gIR0C0Cna7mMfjdX2UKGgGR0BzOWMCLdeqaAdL4mgIR0C0Cn5SiudPdX2UKGgGR0Bwnl94NZvDaAdLr2gIR0C0Cpb8zhxYdX2UKGgGR0Bu4tpj+aScaAdLyWgIR0C0CrirDIikdX2UKGgGR0BzAQ2uPmxMaAdLxWgIR0C0CsIPTXrddX2UKGgGR0ByAvgm7aqTaAdLqmgIR0C0Ct/VEuxsdX2UKGgGR0ByTn0UXYUWaAdNXwNoCEdAtAr26reZX3V9lChoBkdAcNufDk2gnWgHS8BoCEdAtAsNWeYlY3V9lChoBkdAcYaijtXxOWgHS6RoCEdAtAsimpEQXnV9lChoBkdAcO6zS1E3KmgHS8FoCEdAtAslt78ejnV9lChoBkdAcMmVFx4pt2gHS6hoCEdAtAs4FotcwHV9lChoBkdAcwZIAOrhi2gHS71oCEdAtAtJFRYRunV9lChoBkdAclkxwhnrZGgHS9doCEdAtAtWFEiMYXV9lChoBkdAcVmvy9VWCGgHS7toCEdAtAthjkMkQnV9lChoBkdAc0Tl3hXKbWgHS8ZoCEdAtAt9KHwgDHV9lChoBkdAcFsLXL/0d2gHS8NoCEdAtAt/lHSWq3V9lChoBkdAcb4p9qk/KWgHS8BoCEdAtAueLuQZGnV9lChoBkdAcStZmZmZmmgHS9BoCEdAtAvQPbwjMXV9lChoBkdAckK+PRzBAWgHS9VoCEdAtAvxCUornXV9lChoBkdAcw0dgOSW7mgHS91oCEdAtAv4yKvV3HV9lChoBkdAchjhLGrCFmgHS6FoCEdAtAv+KNyYHHV9lChoBkdAcLU12JSBLGgHS8FoCEdAtAwMxEfDDXV9lChoBkdAcyn6be/HpGgHS9JoCEdAtAwfkhib2HV9lChoBkdAc5BudwvQGGgHS8hoCEdAtAwxi5NGmXV9lChoBkdAbxzmPo3aSWgHS6toCEdAtAw7JIUah3V9lChoBkdAcmGx46fapWgHS8BoCEdAtAxUSrYGuHV9lChoBkdAcbPlOoHcDmgHS8toCEdAtAxfzCk43nV9lChoBkdAck7YaYNRWWgHS65oCEdAtAxporWiDnV9lChoBkdAc+XPYFqzq2gHS7BoCEdAtAx3+aScLHV9lChoBkdAdC5echC+lGgHS+toCEdAtAyahcqvvHV9lChoBkdAcuRRXfZVXGgHS8JoCEdAtAzmdBjWkXV9lChoBkdAcj2cJdB0IWgHS89oCEdAtAzyBK+SKXV9lChoBkdAcoWuyu6mO2gHS8RoCEdAtA0d3Sro4nVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 748,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
76 |
"dtype": "int64",
|
77 |
"_np_random": null
|
78 |
},
|
79 |
+
"n_envs": 25,
|
80 |
+
"n_steps": 1500,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f35c1dd17a2b6a0c4a55425e3896216f6cf23f336420ce756288ae6d07e2e37
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e78403a1c3b75ffdbc6b02a758a5d021b12347a87bd1d03d5675ba273ebed1c1
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 290.83478279999997, "std_reward": 17.22268798940462, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-13T15:58:57.868383"}
|