Edit model card

Arabic Question Generation Model

This model is ready to use for Question Generation task, simply input the text and answer, the model will generate a question, This model is a fine-tuned version of AraT5-Base Model

Live Demo

Get the Question from given Context and a Answer : Arabic QG Model

Model in Action 🚀

#Requirements: !pip install transformers
from transformers import AutoTokenizer,AutoModelForSeq2SeqLM

model = AutoModelForSeq2SeqLM.from_pretrained("MIIB-NLP/Arabic-question-generation")
tokenizer = AutoTokenizer.from_pretrained("MIIB-NLP/Arabic-question-generation")

def get_question(context,answer):
  text="context: " +context + " " + "answer: " + answer + " </s>"
  text_encoding = tokenizer.encode_plus(
      text,return_tensors="pt"
  )
  model.eval()
  generated_ids =  model.generate(
    input_ids=text_encoding['input_ids'],
    attention_mask=text_encoding['attention_mask'],
    max_length=64,
    num_beams=5,
    num_return_sequences=1
  )
  return tokenizer.decode(generated_ids[0],skip_special_tokens=True,clean_up_tokenization_spaces=True).replace('question: ',' ')

context="الثورة الجزائرية أو ثورة المليون شهيد، اندلعت في 1 نوفمبر 1954 ضد المستعمر الفرنسي ودامت 7 سنوات ونصف. استشهد فيها أكثر من مليون ونصف مليون جزائري"
answer =" 7 سنوات ونصف"

get_question(context,answer)

#output : question="كم استمرت الثورة الجزائرية؟ " 

Details of Ara-T5

The Ara-T5 model was presented in AraT5: Text-to-Text Transformers for Arabic Language Generation by El Moatez Billah Nagoudi, AbdelRahim Elmadany, Muhammad Abdul-Mageed

Contacts

Mihoubi Akram Fawzi: Linkedin | Github | mihhakram@gmail.com

Ibrir Adel: Linkedin | Github | adelibrir2015@gmail.com

Downloads last month
101
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using MIIB-NLP/Arabic-question-generation 1

Evaluation results