ML-GOD's picture
Training complete
e495949 verified
|
raw
history blame
2.53 kB
metadata
license: mit
base_model: microsoft/deberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: deberta-finetuned-ner-microsoft-disaster
    results: []

Visualize in Weights & Biases Visualize in Weights & Biases

deberta-finetuned-ner-microsoft-disaster

This model is a fine-tuned version of microsoft/deberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1013
  • Precision: 0.9216
  • Recall: 0.9314
  • F1: 0.9265
  • Accuracy: 0.9805

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0872 1.0 1799 0.0762 0.9101 0.9245 0.9172 0.9796
0.0658 2.0 3598 0.0741 0.9244 0.9288 0.9266 0.9811
0.0517 3.0 5397 0.0737 0.9282 0.9291 0.9287 0.9808
0.0383 4.0 7196 0.0834 0.9263 0.9275 0.9269 0.9807
0.0298 5.0 8995 0.0895 0.9220 0.9299 0.9259 0.9802
0.0237 6.0 10794 0.0963 0.9203 0.9322 0.9262 0.9806
0.0182 7.0 12593 0.1013 0.9216 0.9314 0.9265 0.9805

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1