ML4TSP Pretrained Files 2024-02-02
This repository primarily stores the pretrained files for ML4TSP.
All the files in this repository have a last update date prior to 2024-02-02.
1. Dataset
1.1 Supervised Learning Training Dataset
File Naming Convention: tsp{nodes_num}_{distribution}_{solver(params)}_{size}.txt
1.2 Test Dataset (Uniform)
File Naming Convention: tsp{nodes_num}_{solver(params)}_{avg_length}.txt
2. Model Parameters
2.1 NAR Model Parameters
Pretrained File |
Net Type |
Layer |
Embed |
Hidden |
Out |
Epoch(select) |
tsp50_diffusion.pt |
gnn |
12 |
128 |
256 |
2 |
100(?) |
tsp50_dimes.pt |
gnn |
12 |
128 |
256 |
2 |
405/500step |
tsp50_gnn.pt |
gnn |
12 |
128 |
256 |
2 |
100(96) |
tsp50_gnn_wise.pt |
gnn |
12 |
128 |
256 |
2 |
100(76) |
tsp50_gnn4reg.pt |
gnn |
12 |
128 |
256 |
2 |
100(62) |
tsp50_us.pt |
sag |
3 |
64 |
64 |
50 |
100(3) |
tsp100_diffusion.pt |
gnn |
12 |
128 |
256 |
2 |
50(?) |
tsp100_dimes.pt |
gnn |
12 |
128 |
256 |
2 |
240/250step |
tsp100_gnn.pt |
gnn |
12 |
128 |
256 |
2 |
50(50) |
tsp100_gnn_wise.pt |
gnn |
12 |
128 |
256 |
2 |
50(48) |
tsp100_gnn4reg.pt |
gnn |
12 |
128 |
256 |
2 |
50(18) |
tsp100_us.pt |
sag |
3 |
64 |
64 |
50 |
50(3) |
tsp500_diffusion.pt |
gnn |
12 |
128 |
256 |
2 |
50(?) |
tsp500_dimes.pt |
gnn |
12 |
128 |
256 |
2 |
66/100step |
tsp500_gnn.pt |
gnn |
12 |
128 |
256 |
2 |
50(22) |
tsp500_gnn_wise.pt |
gnn |
12 |
128 |
256 |
2 |
50(14) |
tsp1000_diffusion.pt |
gnn |
12 |
128 |
256 |
2 |
50(?) |
tsp1000_gnn_wise.pt |
gnn |
12 |
128 |
256 |
2 |
50(44) |
2.2 AR Model Parameters
Pretrained File |
Net Type |
Layer |
Embed |
Heads |
Baseline |
Epoch(select) |
tsp50_am.pt |
gat |
3 |
128 |
8 |
rollout |
360(360) |
tsp50_pomo.pt |
gat |
3 |
128 |
8 |
shared |
360(360) |
tsp50_symnco.pt |
gat |
3 |
128 |
8 |
no |
360(360) |
tsp100_am.pt |
gat |
3 |
128 |
8 |
rollout |
500(500) |
tsp100_pomo.pt |
gat |
3 |
128 |
8 |
shared |
100(100) |
tsp100_symnco.pt |
gat |
3 |
128 |
8 |
no |
330(329) |
3. Training Details
3.1 NAR Model
- lr_scheduler: "cosine-decay" (torch.optim.lr_scheduler.CosineAnnealingLR)
- learning-rate: 0.003(initial)
- optimizer: "AdamW" (torch.optim.AdamW)
3.2 AR Model
- lr_scheduler: None
- learning-rate: 0.0001(fix)
- optimizer: "Adam" (torch.optim.Adam)