Sambert - embeddings model for Hebrew
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Usage (Sentence-Transformers)
sentence-transformer for Hebrew
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer, util
sentences = ["ืืื ืืืื ืืื", "ืืื ืืื ืืื", "ืืจืงืื ื ืงืื ื ืื ื ืคืืฆืืช"]
model = SentenceTransformer('MPA/sambert')
embeddings = model.encode(sentences)
print(util.cos_sim(embeddings, embeddings))
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["ืืื ืืืื ืืื", "ืืื ืืื ืืื", "ืืจืงืื ื ืงืื ื ืื ื ืคืืฆืืช"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('MPA/sambert')
model = AutoModel.from_pretrained('MPA/sambert')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Training
This model were trained in 2 stages:
- Unsupervised - ~2M paragraphs with 'MultipleNegativesRankingLoss' on cls-token
- Supervised - ~70k paragraphs with 'CosineSimilarityLoss' The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 11672 with parameters:
{'batch_size': 4, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
Parameters of the fit()-Method:
{
"epochs": 1,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 500,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
Citing & Authors
Based on
@misc{gueta2022large, title={Large Pre-Trained Models with Extra-Large Vocabularies: A Contrastive Analysis of Hebrew BERT Models and a New One to Outperform Them All}, author={Eylon Gueta and Avi Shmidman and Shaltiel Shmidman and Cheyn Shmuel Shmidman and Joshua Guedalia and Moshe Koppel and Dan Bareket and Amit Seker and Reut Tsarfaty}, year={2022}, eprint={2211.15199}, archivePrefix={arXiv}, primaryClass={cs.CL} }
- Downloads last month
- 56