|
--- |
|
license: cc-by-nc-4.0 |
|
|
|
language: |
|
- en |
|
pipeline_tag: depth-estimation |
|
tags: |
|
- depth |
|
- relative depth |
|
--- |
|
|
|
# Depth-Anything-V2-Large |
|
|
|
## Introduction |
|
Depth Anything V2 is trained from 595K synthetic labeled images & 62M+ real unlabeled images, providing the most capable monocular depth estimation (MDE) model with the following features: |
|
- more fine-grained details than Depth Anything V1 |
|
- more robust than Depth Anything V1 & SD-based models (e.g., Marigold, Geowizard) |
|
- more efficient (10x faster) & more lightweight than SD-based models |
|
- impressive fine-tuned performance with our pre-trained models |
|
|
|
## Installation |
|
|
|
```bash |
|
git clone https://github.com/MackinationsAi/Upgraded-Depth-Anything-V2.git |
|
cd Upgraded-Depth-Anything-V2 |
|
one_click_install.bat |
|
``` |
|
|
|
## Usage |
|
|
|
Please refer to the [README.md](https://github.com/MackinationsAi/Upgraded-Depth-Anything-V2/blob/main/README.md) for actual usage. |
|
|
|
## Test Code |
|
|
|
```bash |
|
cd Upgraded-Depth-Anything-V2 |
|
venv\scripts\activate |
|
python test.py /path/to/your/image.jpg (or .png) |
|
``` |
|
Create a test.py script using the code below: |
|
|
|
```python |
|
import cv2 |
|
import torch |
|
import numpy as np |
|
import os |
|
import argparse |
|
|
|
from safetensors.torch import load_file |
|
from depth_anything_v2.dpt import DepthAnythingV2 |
|
|
|
# Argument parser for input image path |
|
parser = argparse.ArgumentParser(description="Depth map inference using DepthAnythingV2 model.") |
|
parser.add_argument("input_image_path", type=str, help="Path to the input image") |
|
args = parser.parse_args() |
|
|
|
# Determine the directory of this script |
|
script_dir = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
# Set output path relative to the script directory |
|
output_image_path = os.path.join(script_dir, "base_udav2_hf-code-test.png") |
|
checkpoint_path = os.path.join(script_dir, "checkpoints", "depth_anything_v2_vitl.safetensors") |
|
|
|
# Device selection: CUDA, MPS, or CPU |
|
if torch.cuda.is_available(): |
|
device = torch.device('cuda') |
|
elif torch.backends.mps.is_available(): |
|
device = torch.device('mps') |
|
else: |
|
device = torch.device('cpu') |
|
|
|
model = DepthAnythingV2(encoder='vitl', features=256, out_channels=[256, 512, 1024, 1024]) |
|
|
|
state_dict = load_file(checkpoint_path, device='cpu') |
|
|
|
model.load_state_dict(state_dict) |
|
model.to(device) |
|
model.eval() |
|
|
|
# Load the input image |
|
raw_img = cv2.imread(args.input_image_path) |
|
|
|
# Infer the depth map |
|
depth = model.infer_image(raw_img) # HxW raw depth map |
|
|
|
# Normalize the depth map to 0-255 for saving as an image |
|
depth_normalized = cv2.normalize(depth, None, 0, 255, cv2.NORM_MINMAX) |
|
depth_normalized = depth_normalized.astype(np.uint8) |
|
|
|
cv2.imwrite(output_image_path, depth_normalized) |
|
print(f"Depth map saved at {output_image_path}") |
|
``` |
|
|
|
## Citation |
|
|
|
If you find this project useful, please consider citing [MackinationsAi](https://github.com/MackinationsAi/) & the following: |
|
|
|
```bibtex |
|
@article{depth_anything_v2, |
|
title={Depth Anything V2}, |
|
author={Yang, Lihe & Kang, Bingyi & Huang, Zilong & Zhao, Zhen & Xu, Xiaogang & Feng, Jiashi & Zhao, Hengshuang}, |
|
journal={arXiv:2406.09414}, |
|
year={2024} |
|
} |
|
|
|
@inproceedings{depth_anything_v1, |
|
title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data}, |
|
author={Yang, Lihe & Kang, Bingyi & Huang, Zilong & Xu, Xiaogang & Feng, Jiashi & Zhao, Hengshuang}, |
|
booktitle={CVPR}, |
|
year={2024} |
|
} |