|
--- |
|
tags: |
|
- autotrain |
|
- text-classification |
|
language: |
|
- en |
|
widget: |
|
- text: "I love AutoTrain" |
|
datasets: |
|
- Mantas/autotrain-data-financial-sentiment-analysis |
|
co2_eq_emissions: |
|
emissions: 0.48679833519101634 |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Binary Classification |
|
- Model ID: 61633134830 |
|
- CO2 Emissions (in grams): 0.4868 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.115 |
|
- Accuracy: 0.959 |
|
- Precision: 0.960 |
|
- Recall: 0.957 |
|
- AUC: 0.992 |
|
- F1: 0.958 |
|
|
|
## Usage |
|
|
|
You can use cURL to access this model: |
|
|
|
``` |
|
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Mantas/autotrain-financial-sentiment-analysis-61633134830 |
|
``` |
|
|
|
Or Python API: |
|
|
|
``` |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained("Mantas/autotrain-financial-sentiment-analysis-61633134830", use_auth_token=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("Mantas/autotrain-financial-sentiment-analysis-61633134830", use_auth_token=True) |
|
|
|
inputs = tokenizer("I love AutoTrain", return_tensors="pt") |
|
|
|
outputs = model(**inputs) |
|
``` |