|
--- |
|
base_model: openai/whisper-medium |
|
datasets: |
|
- Marcusxx/CHUNGNAM_Addresses_NO_NUM |
|
language: |
|
- ko |
|
license: apache-2.0 |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
model-index: |
|
- name: CHUNGNAM_FM_AddressesM_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# CHUNGNAM_FM_AddressesM_model |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Marcusxx/CHUNGNAM_Addresses_NO_NUM dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2603 |
|
- Cer: 6.2263 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- training_steps: 20000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cer | |
|
|:-------------:|:-------:|:-----:|:---------------:|:-------:| |
|
| 0.1938 | 0.6906 | 1000 | 0.2020 | 5.9531 | |
|
| 0.1554 | 1.3812 | 2000 | 0.1852 | 5.9452 | |
|
| 0.1048 | 2.0718 | 3000 | 0.1793 | 5.8234 | |
|
| 0.1126 | 2.7624 | 4000 | 0.1794 | 7.6374 | |
|
| 0.0695 | 3.4530 | 5000 | 0.1922 | 6.2990 | |
|
| 0.0382 | 4.1436 | 6000 | 0.1999 | 6.2872 | |
|
| 0.0385 | 4.8343 | 7000 | 0.2019 | 7.5529 | |
|
| 0.0203 | 5.5249 | 8000 | 0.2141 | 7.6944 | |
|
| 0.0142 | 6.2155 | 9000 | 0.2211 | 6.0239 | |
|
| 0.0129 | 6.9061 | 10000 | 0.2190 | 8.6417 | |
|
| 0.0109 | 7.5967 | 11000 | 0.2262 | 8.0187 | |
|
| 0.0062 | 8.2873 | 12000 | 0.2286 | 10.8626 | |
|
| 0.0074 | 8.9779 | 13000 | 0.2323 | 7.1874 | |
|
| 0.005 | 9.6685 | 14000 | 0.2370 | 7.7829 | |
|
| 0.0046 | 10.3591 | 15000 | 0.2415 | 6.2243 | |
|
| 0.0021 | 11.0497 | 16000 | 0.2459 | 6.0946 | |
|
| 0.002 | 11.7403 | 17000 | 0.2474 | 6.1713 | |
|
| 0.0009 | 12.4309 | 18000 | 0.2572 | 6.0887 | |
|
| 0.0001 | 13.1215 | 19000 | 0.2582 | 6.2715 | |
|
| 0.0002 | 13.8122 | 20000 | 0.2603 | 6.2263 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|