finetuned-cards-blackjack
This model is a fine-tuned version of google/vit-base-patch16-224-in21K on the card_images dataset. It achieves the following results on the evaluation set:
- Loss: 0.5081
- Accuracy: 0.8696
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3563 | 0.24 | 100 | 1.1495 | 0.6750 |
1.3393 | 0.48 | 200 | 1.0388 | 0.7204 |
1.2033 | 0.73 | 300 | 0.9324 | 0.7547 |
0.9672 | 0.97 | 400 | 0.8558 | 0.7659 |
0.8674 | 1.21 | 500 | 0.8456 | 0.7616 |
0.8277 | 1.45 | 600 | 0.7563 | 0.7959 |
0.8703 | 1.69 | 700 | 0.8465 | 0.7539 |
0.893 | 1.94 | 800 | 0.6881 | 0.8002 |
0.9454 | 2.18 | 900 | 0.7211 | 0.8027 |
0.8109 | 2.42 | 1000 | 0.6369 | 0.8285 |
0.8762 | 2.66 | 1100 | 0.6336 | 0.8396 |
0.8034 | 2.91 | 1200 | 0.6580 | 0.8165 |
0.5833 | 3.15 | 1300 | 0.5828 | 0.8439 |
0.8811 | 3.39 | 1400 | 0.6564 | 0.8259 |
0.5639 | 3.63 | 1500 | 0.5737 | 0.8439 |
0.639 | 3.87 | 1600 | 0.5609 | 0.8379 |
0.6455 | 4.12 | 1700 | 0.5820 | 0.8370 |
0.5402 | 4.36 | 1800 | 0.5797 | 0.8345 |
0.5311 | 4.6 | 1900 | 0.5511 | 0.8456 |
0.5734 | 4.84 | 2000 | 0.5444 | 0.8508 |
0.5206 | 5.08 | 2100 | 0.5326 | 0.8636 |
0.6272 | 5.33 | 2200 | 0.5478 | 0.8525 |
0.5124 | 5.57 | 2300 | 0.5296 | 0.8688 |
0.5659 | 5.81 | 2400 | 0.5181 | 0.8705 |
0.4212 | 6.05 | 2500 | 0.5200 | 0.8611 |
0.4338 | 6.3 | 2600 | 0.5135 | 0.8731 |
0.3407 | 6.54 | 2700 | 0.5147 | 0.8722 |
0.4043 | 6.78 | 2800 | 0.5081 | 0.8696 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.