metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.8
distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.9403
- Accuracy: 0.8
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.1046 | 1.0 | 113 | 2.0205 | 0.54 |
1.3571 | 2.0 | 226 | 1.3759 | 0.57 |
1.0786 | 3.0 | 339 | 1.0393 | 0.72 |
0.6829 | 4.0 | 452 | 0.8594 | 0.73 |
0.6606 | 5.0 | 565 | 0.8099 | 0.75 |
0.4678 | 6.0 | 678 | 0.7673 | 0.76 |
0.2307 | 7.0 | 791 | 0.6926 | 0.78 |
0.0839 | 8.0 | 904 | 0.8226 | 0.77 |
0.0531 | 9.0 | 1017 | 0.7695 | 0.82 |
0.0197 | 10.0 | 1130 | 0.8962 | 0.79 |
0.0136 | 11.0 | 1243 | 0.8740 | 0.81 |
0.0105 | 12.0 | 1356 | 0.8661 | 0.79 |
0.0088 | 13.0 | 1469 | 0.9343 | 0.8 |
0.0082 | 14.0 | 1582 | 0.9394 | 0.8 |
0.007 | 15.0 | 1695 | 0.9403 | 0.8 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1